-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge branch 'master' of github.com:ontogenerator/cpdetectorr # Conflicts: # DESCRIPTION
- Loading branch information
Showing
2 changed files
with
290 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,72 @@ | ||
## ----setup, include = FALSE---------------------------------------------- | ||
knitr::opts_chunk$set( | ||
collapse = TRUE, | ||
comment = "#>" | ||
) | ||
|
||
## ------------------------------------------------------------------------ | ||
library(cpdetectorr) # load package first | ||
set.seed(25) | ||
cp_wrapper(c(rbinom(50, 1, 0.3), rbinom(50, 1, 0.8)), TRUE, "binomial", 2) | ||
|
||
## ------------------------------------------------------------------------ | ||
d_responses <- data.frame(Responses = c(rbinom(50, 1, 0.3), rbinom(50, 1, 0.8))) | ||
cp_wrapper(d_responses, TRUE, "chisquare", 2) | ||
|
||
## ------------------------------------------------------------------------ | ||
eyeblink[,] # inspect data set | ||
|
||
## ---- eval = FALSE------------------------------------------------------- | ||
# cp_wrapper(eyeblink, TRUE, "chisquare", 2) | ||
|
||
## ------------------------------------------------------------------------ | ||
cp_wrapper(eyeblink, TRUE, "chisquare", 3) | ||
|
||
cp_wrapper(eyeblink, TRUE, "binomial", 2) | ||
|
||
## ------------------------------------------------------------------------ | ||
library(ggplot2) # load the ggplot package | ||
eyeblinkdata <- data.frame(Trial = 1:length(eyeblink[,]), | ||
CumRespMeasure = cumsum(eyeblink)[,]) | ||
changepoints <- cp_wrapper(eyeblink, TRUE, "binomial", 4) # save the output of the change point analysis | ||
#generate a cumulative response vs trial plot: | ||
ggplot(eyeblinkdata) + geom_line(aes(Trial, CumRespMeasure)) + | ||
geom_point(data = changepoints, aes(Trial, CumSs), size = 3) | ||
|
||
## ------------------------------------------------------------------------ | ||
plusmaze[,] # inspect data set | ||
(cp.1 <- cp_wrapper(plusmaze, TRUE, "binomial", 1.3)) #find the change points | ||
# plot average response rate per trial | ||
ggplot() + geom_step(data = cp.1, aes(Trial,Slopes)) + | ||
ylab("Average Response Rate per Trial") | ||
# for comparison, the cumulative response vs trial plot, as in the example above: | ||
plusmazedata <- data.frame(Trial = 1:length(plusmaze[,]), | ||
CumRespMeasure = cumsum(plusmaze)[,]) | ||
ggplot(plusmazedata) + geom_line(aes(Trial, CumRespMeasure)) + | ||
geom_point(data = cp.1, aes(Trial, CumSs), size = 3) | ||
|
||
## ------------------------------------------------------------------------ | ||
(cp.2 <- cp_wrapper(hopperentry, TRUE, "ttest", 4)) #find the change points | ||
# cumulative response vs trial plot | ||
hedata <- data.frame(Trial = 1:length(hopperentry[,]), | ||
CumRespMeasure = cumsum(hopperentry)[,]) | ||
pl1 <- ggplotGrob(ggplot(hedata) + geom_line(aes(Trial, CumRespMeasure)) + | ||
geom_point(data = cp.2, aes(Trial, CumSs), size = 3)) | ||
# plot average response rate per trial | ||
pl2 <- ggplotGrob(ggplot(cp.2) + geom_step(aes(Trial, Slopes)) + | ||
ylab("Average Response Rate per Trial")) | ||
# stack the two plots vertically using the grid package | ||
grid::grid.draw(rbind(pl1, pl2, size = "first")) | ||
|
||
## ------------------------------------------------------------------------ | ||
(cp.3 <- cp_wrapper(matching, FALSE, "binomial", 2)) #find the change points | ||
# cumulative response vs trial plot | ||
matchingdata <- data.frame(Events = 1:length(matching[,]), | ||
Time = cumsum(matching)[,]) | ||
pl3 <- ggplotGrob(ggplot(matchingdata) + geom_line(aes(Time, Events)) + | ||
geom_point(data = cp.3, aes(Time, Events), size = 3)) | ||
# plot average response rate per trial | ||
pl4 <- ggplotGrob(ggplot(cp.3) + geom_step(aes(Time, Slopes)) + | ||
ylab("Events per Unit Time")) | ||
grid::grid.draw(rbind(pl3, pl4, size = "first")) | ||
|
Oops, something went wrong.