Releases: onnx/onnxmltools
Releases · onnx/onnxmltools
1.12.0
- Fix early stopping for XGBClassifier and xgboost > 2, #597
- Fix discrepancies with XGBRegressor and xgboost > 2, #670
- Support count:poisson for XGBRegressor, #666
- Supports XGBRFClassifier and XGBRFRegressor, #665
- ONNX_DFS_PATH to be set in the spark config, #653 (by @Ironwood-Cyber)
- Sparkml converter: support type StringType and StringType(), #639
- Add check for base_score in _get_attributes function #637, #626 (by @tolleybot)
- Support for lightgbm >= 4.0, #634
1.11.2
1.11.1
- feat: add support for SparkML CountVectorizer conversion #560
- docs: update sparkml doc; cleanups. #559
- fix: 'SparkSession' object has no attribute 'util' #557
- feat: add support for SparkML KMeansModel conversion #556
- fix: SparkML StandardScaler conversion fails when withStd or withMean is set to true #555
- fix: Converter for SparkML VectorAssembler does not support vector inputs correctly #554
- fix: ONNX conversion for Spark OneHotEncoder model #552
1.11.0
1.10.0
- Replace #507 + fix bug with XGBoost converter when base_score is None #510
- Use assertRegex instead of assertRegexpMatches for Python 3.11 compatibility. #508
- Support for opset 15 and update version to 1.10.0 #505
- add support for quantile objective for LGBM models #503
- Support parameter shape_override and other options for convert_tensorflow #497
- Implement option split to reduce discrepancies for lightgbm regressors #496
1.9.1
1.9.0
LightGBM
- Improves lightgbm conversion speed #491
- Fix discovering classifier objective #480
- Fix missing type in lgbm regressor #488
- Support gamma objective in LGBMRegressor #484
- Allow to add custom post transform functions that are not supported by the ONNX spec yet #463
- Enable option zipmap for LGBM converter #452
XGBoost
- Use all tree when best_ntree_limit is not specified #459
- Fix discrepencies when xgboost trees are empty #447
Keras
- Switch to tf2onnx for tensorflow>=2.0 instead of keras2onnx #492
1.8.0
New features
- New converters for CatBoost #392
- Integration with Hummingbird #404, #418, #427
- Support for opset 13 #437
XGBoost
- Support float type for feature_id #423
- Support unsigned integer as class type #426
- Fix the converter when the parameter best_ntree_limit is used #429
- Support multi:softmax objective #442
CoreML
v1.7.0
The major update for this release
- Supports ONNX 1.7
- Work with the new xgboost version
- Remove Python 2.x support
Details:
Add the flake8 to be the default code formatter (#401)
Fixes #396, xgboost converter for xgboost >= 1.0.2 (#397)
Support onnx 1.7 in CI build (#398)
fixed the xgboost version (#395)
fix ceiling-mode defaults for pool operators (AvgPool, MaxPool) (#388)
Update documentation, add examples (#385)
Remove support of python 2.7 (#383)
upgrade to 1.7 (#384)
Fix for onnx 1.7 release (#381)
Ping h2o version==3.28.0.3 (#377)
Fix xgboost converter (#373)
xgboost not supporting 1.0 version. (#372)
Known issues:
onnxmltools tf2onnx wrapper can only work with tf2onnx <= 1.5.6.