Skip to content

Commit

Permalink
fix conflict
Browse files Browse the repository at this point in the history
Signed-off-by: yuwenzho <[email protected]>
  • Loading branch information
yuwenzho committed Jul 2, 2024
2 parents 2f3090d + 49aeb9c commit 978dd2f
Show file tree
Hide file tree
Showing 85 changed files with 14,082 additions and 2,424 deletions.
30 changes: 29 additions & 1 deletion examples/.config/model_params_onnxrt.json
Original file line number Diff line number Diff line change
Expand Up @@ -55,6 +55,34 @@
"input_model": "/tf_dataset2/models/onnx/Llama-2-7b-hf-with-past",
"main_script": "main.py",
"batch_size": 1
}
},
"bert_base_MRPC": {
"model_src_dir": "nlp/bert/quantization/ptq_static",
"dataset_location": "/tf_dataset/pytorch/glue_data/MRPC",
"input_model": "/tf_dataset2/models/onnx/bert_base_MRPC/bert.onnx",
"main_script": "main.py",
"batch_size": 8
},
"bert_base_MRPC_dynamic": {
"model_src_dir": "nlp/bert/quantization/ptq_dynamic",
"dataset_location": "/tf_dataset/pytorch/glue_data/MRPC",
"input_model": "/tf_dataset2/models/onnx/bert_base_MRPC/bert.onnx",
"main_script": "main.py",
"batch_size": 8
},
"resnet50-v1-12_qdq": {
"model_src_dir": "image_recognition/resnet50/quantization/ptq_static",
"dataset_location": "/tf_dataset2/datasets/imagenet/ImagenetRaw/ILSVRC2012_img_val",
"input_model": "/tf_dataset2/models/onnx/resnet50-v1-12/resnet50-v1-13.onnx",
"main_script": "main.py",
"batch_size": 1
},
"resnet50-v1-12": {
"model_src_dir": "image_recognition/resnet50/quantization/ptq_static",
"dataset_location": "/tf_dataset2/datasets/imagenet/ImagenetRaw/ILSVRC2012_img_val",
"input_model": "/tf_dataset2/models/onnx/resnet50-v1-12/resnet50-v1-12.onnx",
"main_script": "main.py",
"batch_size": 1
},
}
}
Original file line number Diff line number Diff line change
@@ -0,0 +1,63 @@
# Step-by-Step

This example load an image classification model from [ONNX Model Zoo](https://github.com/onnx/models) and confirm its accuracy and speed based on [ILSVR2012 validation Imagenet dataset](http://www.image-net.org/challenges/LSVRC/2012/downloads). You need to download this dataset yourself.

# Prerequisite

## 1. Environment

```shell
pip install onnx-neural-compressor
pip install -r requirements.txt
```


## 2. Prepare Model

```shell
python prepare_model.py --output_model='resnet50-v1-12.onnx'
```

## 3. Prepare Dataset

Download dataset [ILSVR2012 validation Imagenet dataset](http://www.image-net.org/challenges/LSVRC/2012/downloads).

Download label:

```shell
wget http://dl.caffe.berkeleyvision.org/caffe_ilsvrc12.tar.gz
tar -xvzf caffe_ilsvrc12.tar.gz val.txt
```

# Run


## 1. Quantization

Quantize model with QLinearOps:

```bash
bash run_quant.sh --input_model=path/to/model \ # model path as *.onnx
--dataset_location=/path/to/imagenet \
--label_path=/path/to/val.txt \
--output_model=path/to/save
```

Quantize model with QDQ mode:

```bash
bash run_quant.sh --input_model=path/to/model \ # model path as *.onnx
--dataset_location=/path/to/imagenet \
--label_path=/path/to/val.txt \
--output_model=path/to/save \
--quant_format=QDQ
```

## 2. Benchmark

```bash
bash run_benchmark.sh --input_model=path/to/model \ # model path as *.onnx
--dataset_location=/path/to/imagenet \
--label_path=/path/to/val.txt \
--mode=performance # or accuracy
```
277 changes: 277 additions & 0 deletions examples/image_recognition/resnet50/quantization/ptq_static/main.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,277 @@
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
# pylint:disable=redefined-outer-name,logging-format-interpolation

import argparse
import collections
import logging
import os
import re
import time

import cv2
import numpy as np
import onnx
import onnxruntime as ort
from PIL import Image
from sklearn import metrics

from onnx_neural_compressor import data_reader, quantization
from onnx_neural_compressor.quantization import config, tuning

logger = logging.getLogger(__name__)
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.WARN
)


def _topk_shape_validate(preds, labels):
# preds shape can be Nxclass_num or class_num(N=1 by default)
# it's more suitable for 'Accuracy' with preds shape Nx1(or 1) output from argmax
if isinstance(preds, int):
preds = [preds]
preds = np.array(preds)
elif isinstance(preds, np.ndarray):
preds = np.array(preds)
elif isinstance(preds, list):
preds = np.array(preds)
preds = preds.reshape((-1, preds.shape[-1]))

# consider labels just int value 1x1
if isinstance(labels, int):
labels = [labels]
labels = np.array(labels)
elif isinstance(labels, tuple):
labels = np.array([labels])
labels = labels.reshape((labels.shape[-1], -1))
elif isinstance(labels, list):
if isinstance(labels[0], int):
labels = np.array(labels)
labels = labels.reshape((labels.shape[0], 1))
elif isinstance(labels[0], tuple):
labels = np.array(labels)
labels = labels.reshape((labels.shape[-1], -1))
else:
labels = np.array(labels)
# labels most have 2 axis, 2 cases: N(or Nx1 sparse) or Nxclass_num(one-hot)
# only support 2 dimension one-shot labels
# or 1 dimension one-hot class_num will confuse with N

if len(preds.shape) == 1:
N = 1
class_num = preds.shape[0]
preds = preds.reshape([-1, class_num])
elif len(preds.shape) >= 2:
N = preds.shape[0]
preds = preds.reshape([N, -1])
class_num = preds.shape[1]

label_N = labels.shape[0]
assert label_N == N, "labels batch size should same with preds"
labels = labels.reshape([N, -1])
# one-hot labels will have 2 dimension not equal 1
if labels.shape[1] != 1:
labels = labels.argsort()[..., -1:]
return preds, labels


class TopK:
def __init__(self, k=1):
self.k = k
self.num_correct = 0
self.num_sample = 0

def update(self, preds, labels, sample_weight=None):
preds, labels = _topk_shape_validate(preds, labels)
preds = preds.argsort()[..., -self.k :]
if self.k == 1:
correct = metrics.accuracy_score(preds, labels, normalize=False)
self.num_correct += correct

else:
for p, l in zip(preds, labels):
# get top-k labels with np.argpartition
# p = np.argpartition(p, -self.k)[-self.k:]
l = l.astype("int32")
if l in p:
self.num_correct += 1

self.num_sample += len(labels)

def reset(self):
self.num_correct = 0
self.num_sample = 0

def result(self):
if self.num_sample == 0:
logger.warning("Sample num during evaluation is 0.")
return 0
return self.num_correct / self.num_sample


class DataReader(data_reader.CalibrationDataReader):
def __init__(self, model_path, dataset_location, image_list, batch_size=1, calibration_sampling_size=-1):
self.batch_size = batch_size
self.image_list = []
self.label_list = []
src_lst = []
label_lst = []
num = 0
with open(image_list, "r") as f:
for s in f:
image_name, label = re.split(r"\s+", s.strip())
src = os.path.join(dataset_location, image_name)
if not os.path.exists(src):
continue
src_lst.append(src)
label_lst.append(int(label))
if len(src_lst) == batch_size:
self.image_list.append(src_lst)
self.label_list.append(label_lst)
num += batch_size
if calibration_sampling_size > 0 and num >= calibration_sampling_size:
break
src_lst = []
label_lst = []
if len(src_lst) > 0:
self.image_list.append(src_lst)
self.label_list.append(label_lst)
model = onnx.load(model_path, load_external_data=False)
self.inputs_names = [input.name for input in model.graph.input]
self.iter_next = iter(self.image_list)

def _preprpcess(self, src):
with Image.open(src) as image:
image = np.array(image.convert("RGB")).astype(np.float32)
image = image / 255.0
image = cv2.resize(image, (256, 256), interpolation=cv2.INTER_LINEAR)

h, w = image.shape[0], image.shape[1]

y0 = (h - 224) // 2
x0 = (w - 224) // 2
image = image[y0 : y0 + 224, x0 : x0 + 224, :]
image = (image - [0.485, 0.456, 0.406]) / [0.229, 0.224, 0.225]
image = image.transpose((2, 0, 1))
return image.astype("float32")

def get_next(self):
lst = next(self.iter_next, None)
if lst is not None:
return {self.inputs_names[0]: np.stack([self._preprpcess(src) for src in lst])}
else:
return None

def rewind(self):
self.iter_next = iter(self.image_list)


def eval_func(model, dataloader, metric):
metric.reset()
sess = ort.InferenceSession(model, providers=ort.get_available_providers())
labels = dataloader.label_list
for idx, batch in enumerate(dataloader):
output = sess.run(None, batch)
metric.update(output, labels[idx])
return metric.result()


if __name__ == "__main__":
logger.info("Evaluating ONNXRuntime full precision accuracy and performance:")
parser = argparse.ArgumentParser(
description="Resnet50 fine-tune examples for image classification tasks.",
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
)
parser.add_argument("--model_path", type=str, help="Pre-trained model on onnx file")
parser.add_argument("--dataset_location", type=str, help="Imagenet data path")
parser.add_argument("--label_path", type=str, help="Imagenet label path")
parser.add_argument("--benchmark", action="store_true", default=False)
parser.add_argument("--tune", action="store_true", default=False, help="whether quantize the model")
parser.add_argument("--output_model", type=str, help="output model path")
parser.add_argument("--mode", type=str, help="benchmark mode of performance or accuracy")
parser.add_argument(
"--intra_op_num_threads", type=int, default=4, help="intra_op_num_threads for performance benchmark"
)
parser.add_argument(
"--quant_format", type=str, default="QOperator", choices=["QDQ", "QOperator"], help="quantization format"
)
parser.add_argument(
"--batch_size",
default=1,
type=int,
)
args = parser.parse_args()

top1 = TopK()
dataloader = DataReader(args.model_path, args.dataset_location, args.label_path, args.batch_size)

def eval(onnx_model):
dataloader.rewind()
return eval_func(onnx_model, dataloader, top1)

if args.benchmark:
if args.mode == "performance":
total_time = 0.0
num_iter = 100
num_warmup = 10

sess_options = ort.SessionOptions()
sess_options.intra_op_num_threads = args.intra_op_num_threads
session = ort.InferenceSession(args.model_path, sess_options, providers=ort.get_available_providers())
ort_inputs = {}
len_inputs = len(session.get_inputs())
inputs_names = [session.get_inputs()[i].name for i in range(len_inputs)]

for idx, batch in enumerate(dataloader):
if idx + 1 > num_iter:
break
tic = time.time()
predictions = session.run(None, batch)
toc = time.time()
if idx >= num_warmup:
total_time += toc - tic

print("\n", "-" * 10, "Summary:", "-" * 10)
print(args)
throughput = (num_iter - num_warmup) / total_time
print("Throughput: {} samples/s".format(throughput))
elif args.mode == "accuracy":
acc_result = eval_func(args.model_path, dataloader, top1)
print("Batch size = %d" % dataloader.batch_size)
print("Accuracy: %.5f" % acc_result)

if args.tune:
calibration_data_reader = DataReader(
args.model_path, args.dataset_location, args.label_path, args.batch_size, calibration_sampling_size=100
)

custom_tune_config = tuning.TuningConfig(
config_set=config.StaticQuantConfig.get_config_set_for_tuning(
quant_format=(
quantization.QuantFormat.QOperator
if args.quant_format == "QOperator"
else quantization.QuantFormat.QDQ
),
)
)
best_model = tuning.autotune(
model_input=args.model_path,
tune_config=custom_tune_config,
eval_fn=eval,
calibration_data_reader=calibration_data_reader,
)
onnx.save(best_model, args.output_model)
Loading

0 comments on commit 978dd2f

Please sign in to comment.