-
Notifications
You must be signed in to change notification settings - Fork 9
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Signed-off-by: yuwenzho <[email protected]>
- Loading branch information
Showing
85 changed files
with
14,082 additions
and
2,424 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
63 changes: 63 additions & 0 deletions
63
examples/image_recognition/resnet50/quantization/ptq_static/README.md
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,63 @@ | ||
# Step-by-Step | ||
|
||
This example load an image classification model from [ONNX Model Zoo](https://github.com/onnx/models) and confirm its accuracy and speed based on [ILSVR2012 validation Imagenet dataset](http://www.image-net.org/challenges/LSVRC/2012/downloads). You need to download this dataset yourself. | ||
|
||
# Prerequisite | ||
|
||
## 1. Environment | ||
|
||
```shell | ||
pip install onnx-neural-compressor | ||
pip install -r requirements.txt | ||
``` | ||
|
||
|
||
## 2. Prepare Model | ||
|
||
```shell | ||
python prepare_model.py --output_model='resnet50-v1-12.onnx' | ||
``` | ||
|
||
## 3. Prepare Dataset | ||
|
||
Download dataset [ILSVR2012 validation Imagenet dataset](http://www.image-net.org/challenges/LSVRC/2012/downloads). | ||
|
||
Download label: | ||
|
||
```shell | ||
wget http://dl.caffe.berkeleyvision.org/caffe_ilsvrc12.tar.gz | ||
tar -xvzf caffe_ilsvrc12.tar.gz val.txt | ||
``` | ||
|
||
# Run | ||
|
||
|
||
## 1. Quantization | ||
|
||
Quantize model with QLinearOps: | ||
|
||
```bash | ||
bash run_quant.sh --input_model=path/to/model \ # model path as *.onnx | ||
--dataset_location=/path/to/imagenet \ | ||
--label_path=/path/to/val.txt \ | ||
--output_model=path/to/save | ||
``` | ||
|
||
Quantize model with QDQ mode: | ||
|
||
```bash | ||
bash run_quant.sh --input_model=path/to/model \ # model path as *.onnx | ||
--dataset_location=/path/to/imagenet \ | ||
--label_path=/path/to/val.txt \ | ||
--output_model=path/to/save \ | ||
--quant_format=QDQ | ||
``` | ||
|
||
## 2. Benchmark | ||
|
||
```bash | ||
bash run_benchmark.sh --input_model=path/to/model \ # model path as *.onnx | ||
--dataset_location=/path/to/imagenet \ | ||
--label_path=/path/to/val.txt \ | ||
--mode=performance # or accuracy | ||
``` |
277 changes: 277 additions & 0 deletions
277
examples/image_recognition/resnet50/quantization/ptq_static/main.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,277 @@ | ||
# Licensed to the Apache Software Foundation (ASF) under one | ||
# or more contributor license agreements. See the NOTICE file | ||
# distributed with this work for additional information | ||
# regarding copyright ownership. The ASF licenses this file | ||
# to you under the Apache License, Version 2.0 (the | ||
# "License"); you may not use this file except in compliance | ||
# with the License. You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, | ||
# software distributed under the License is distributed on an | ||
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
# KIND, either express or implied. See the License for the | ||
# specific language governing permissions and limitations | ||
# under the License. | ||
# pylint:disable=redefined-outer-name,logging-format-interpolation | ||
|
||
import argparse | ||
import collections | ||
import logging | ||
import os | ||
import re | ||
import time | ||
|
||
import cv2 | ||
import numpy as np | ||
import onnx | ||
import onnxruntime as ort | ||
from PIL import Image | ||
from sklearn import metrics | ||
|
||
from onnx_neural_compressor import data_reader, quantization | ||
from onnx_neural_compressor.quantization import config, tuning | ||
|
||
logger = logging.getLogger(__name__) | ||
logging.basicConfig( | ||
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.WARN | ||
) | ||
|
||
|
||
def _topk_shape_validate(preds, labels): | ||
# preds shape can be Nxclass_num or class_num(N=1 by default) | ||
# it's more suitable for 'Accuracy' with preds shape Nx1(or 1) output from argmax | ||
if isinstance(preds, int): | ||
preds = [preds] | ||
preds = np.array(preds) | ||
elif isinstance(preds, np.ndarray): | ||
preds = np.array(preds) | ||
elif isinstance(preds, list): | ||
preds = np.array(preds) | ||
preds = preds.reshape((-1, preds.shape[-1])) | ||
|
||
# consider labels just int value 1x1 | ||
if isinstance(labels, int): | ||
labels = [labels] | ||
labels = np.array(labels) | ||
elif isinstance(labels, tuple): | ||
labels = np.array([labels]) | ||
labels = labels.reshape((labels.shape[-1], -1)) | ||
elif isinstance(labels, list): | ||
if isinstance(labels[0], int): | ||
labels = np.array(labels) | ||
labels = labels.reshape((labels.shape[0], 1)) | ||
elif isinstance(labels[0], tuple): | ||
labels = np.array(labels) | ||
labels = labels.reshape((labels.shape[-1], -1)) | ||
else: | ||
labels = np.array(labels) | ||
# labels most have 2 axis, 2 cases: N(or Nx1 sparse) or Nxclass_num(one-hot) | ||
# only support 2 dimension one-shot labels | ||
# or 1 dimension one-hot class_num will confuse with N | ||
|
||
if len(preds.shape) == 1: | ||
N = 1 | ||
class_num = preds.shape[0] | ||
preds = preds.reshape([-1, class_num]) | ||
elif len(preds.shape) >= 2: | ||
N = preds.shape[0] | ||
preds = preds.reshape([N, -1]) | ||
class_num = preds.shape[1] | ||
|
||
label_N = labels.shape[0] | ||
assert label_N == N, "labels batch size should same with preds" | ||
labels = labels.reshape([N, -1]) | ||
# one-hot labels will have 2 dimension not equal 1 | ||
if labels.shape[1] != 1: | ||
labels = labels.argsort()[..., -1:] | ||
return preds, labels | ||
|
||
|
||
class TopK: | ||
def __init__(self, k=1): | ||
self.k = k | ||
self.num_correct = 0 | ||
self.num_sample = 0 | ||
|
||
def update(self, preds, labels, sample_weight=None): | ||
preds, labels = _topk_shape_validate(preds, labels) | ||
preds = preds.argsort()[..., -self.k :] | ||
if self.k == 1: | ||
correct = metrics.accuracy_score(preds, labels, normalize=False) | ||
self.num_correct += correct | ||
|
||
else: | ||
for p, l in zip(preds, labels): | ||
# get top-k labels with np.argpartition | ||
# p = np.argpartition(p, -self.k)[-self.k:] | ||
l = l.astype("int32") | ||
if l in p: | ||
self.num_correct += 1 | ||
|
||
self.num_sample += len(labels) | ||
|
||
def reset(self): | ||
self.num_correct = 0 | ||
self.num_sample = 0 | ||
|
||
def result(self): | ||
if self.num_sample == 0: | ||
logger.warning("Sample num during evaluation is 0.") | ||
return 0 | ||
return self.num_correct / self.num_sample | ||
|
||
|
||
class DataReader(data_reader.CalibrationDataReader): | ||
def __init__(self, model_path, dataset_location, image_list, batch_size=1, calibration_sampling_size=-1): | ||
self.batch_size = batch_size | ||
self.image_list = [] | ||
self.label_list = [] | ||
src_lst = [] | ||
label_lst = [] | ||
num = 0 | ||
with open(image_list, "r") as f: | ||
for s in f: | ||
image_name, label = re.split(r"\s+", s.strip()) | ||
src = os.path.join(dataset_location, image_name) | ||
if not os.path.exists(src): | ||
continue | ||
src_lst.append(src) | ||
label_lst.append(int(label)) | ||
if len(src_lst) == batch_size: | ||
self.image_list.append(src_lst) | ||
self.label_list.append(label_lst) | ||
num += batch_size | ||
if calibration_sampling_size > 0 and num >= calibration_sampling_size: | ||
break | ||
src_lst = [] | ||
label_lst = [] | ||
if len(src_lst) > 0: | ||
self.image_list.append(src_lst) | ||
self.label_list.append(label_lst) | ||
model = onnx.load(model_path, load_external_data=False) | ||
self.inputs_names = [input.name for input in model.graph.input] | ||
self.iter_next = iter(self.image_list) | ||
|
||
def _preprpcess(self, src): | ||
with Image.open(src) as image: | ||
image = np.array(image.convert("RGB")).astype(np.float32) | ||
image = image / 255.0 | ||
image = cv2.resize(image, (256, 256), interpolation=cv2.INTER_LINEAR) | ||
|
||
h, w = image.shape[0], image.shape[1] | ||
|
||
y0 = (h - 224) // 2 | ||
x0 = (w - 224) // 2 | ||
image = image[y0 : y0 + 224, x0 : x0 + 224, :] | ||
image = (image - [0.485, 0.456, 0.406]) / [0.229, 0.224, 0.225] | ||
image = image.transpose((2, 0, 1)) | ||
return image.astype("float32") | ||
|
||
def get_next(self): | ||
lst = next(self.iter_next, None) | ||
if lst is not None: | ||
return {self.inputs_names[0]: np.stack([self._preprpcess(src) for src in lst])} | ||
else: | ||
return None | ||
|
||
def rewind(self): | ||
self.iter_next = iter(self.image_list) | ||
|
||
|
||
def eval_func(model, dataloader, metric): | ||
metric.reset() | ||
sess = ort.InferenceSession(model, providers=ort.get_available_providers()) | ||
labels = dataloader.label_list | ||
for idx, batch in enumerate(dataloader): | ||
output = sess.run(None, batch) | ||
metric.update(output, labels[idx]) | ||
return metric.result() | ||
|
||
|
||
if __name__ == "__main__": | ||
logger.info("Evaluating ONNXRuntime full precision accuracy and performance:") | ||
parser = argparse.ArgumentParser( | ||
description="Resnet50 fine-tune examples for image classification tasks.", | ||
formatter_class=argparse.ArgumentDefaultsHelpFormatter, | ||
) | ||
parser.add_argument("--model_path", type=str, help="Pre-trained model on onnx file") | ||
parser.add_argument("--dataset_location", type=str, help="Imagenet data path") | ||
parser.add_argument("--label_path", type=str, help="Imagenet label path") | ||
parser.add_argument("--benchmark", action="store_true", default=False) | ||
parser.add_argument("--tune", action="store_true", default=False, help="whether quantize the model") | ||
parser.add_argument("--output_model", type=str, help="output model path") | ||
parser.add_argument("--mode", type=str, help="benchmark mode of performance or accuracy") | ||
parser.add_argument( | ||
"--intra_op_num_threads", type=int, default=4, help="intra_op_num_threads for performance benchmark" | ||
) | ||
parser.add_argument( | ||
"--quant_format", type=str, default="QOperator", choices=["QDQ", "QOperator"], help="quantization format" | ||
) | ||
parser.add_argument( | ||
"--batch_size", | ||
default=1, | ||
type=int, | ||
) | ||
args = parser.parse_args() | ||
|
||
top1 = TopK() | ||
dataloader = DataReader(args.model_path, args.dataset_location, args.label_path, args.batch_size) | ||
|
||
def eval(onnx_model): | ||
dataloader.rewind() | ||
return eval_func(onnx_model, dataloader, top1) | ||
|
||
if args.benchmark: | ||
if args.mode == "performance": | ||
total_time = 0.0 | ||
num_iter = 100 | ||
num_warmup = 10 | ||
|
||
sess_options = ort.SessionOptions() | ||
sess_options.intra_op_num_threads = args.intra_op_num_threads | ||
session = ort.InferenceSession(args.model_path, sess_options, providers=ort.get_available_providers()) | ||
ort_inputs = {} | ||
len_inputs = len(session.get_inputs()) | ||
inputs_names = [session.get_inputs()[i].name for i in range(len_inputs)] | ||
|
||
for idx, batch in enumerate(dataloader): | ||
if idx + 1 > num_iter: | ||
break | ||
tic = time.time() | ||
predictions = session.run(None, batch) | ||
toc = time.time() | ||
if idx >= num_warmup: | ||
total_time += toc - tic | ||
|
||
print("\n", "-" * 10, "Summary:", "-" * 10) | ||
print(args) | ||
throughput = (num_iter - num_warmup) / total_time | ||
print("Throughput: {} samples/s".format(throughput)) | ||
elif args.mode == "accuracy": | ||
acc_result = eval_func(args.model_path, dataloader, top1) | ||
print("Batch size = %d" % dataloader.batch_size) | ||
print("Accuracy: %.5f" % acc_result) | ||
|
||
if args.tune: | ||
calibration_data_reader = DataReader( | ||
args.model_path, args.dataset_location, args.label_path, args.batch_size, calibration_sampling_size=100 | ||
) | ||
|
||
custom_tune_config = tuning.TuningConfig( | ||
config_set=config.StaticQuantConfig.get_config_set_for_tuning( | ||
quant_format=( | ||
quantization.QuantFormat.QOperator | ||
if args.quant_format == "QOperator" | ||
else quantization.QuantFormat.QDQ | ||
), | ||
) | ||
) | ||
best_model = tuning.autotune( | ||
model_input=args.model_path, | ||
tune_config=custom_tune_config, | ||
eval_fn=eval, | ||
calibration_data_reader=calibration_data_reader, | ||
) | ||
onnx.save(best_model, args.output_model) |
Oops, something went wrong.