Skip to content

A simple example of python api for real time machine learning, using scikit-learn, Flask and Docker

Notifications You must be signed in to change notification settings

omers/python-flask-sklearn-docker-template

 
 

Repository files navigation

python-flask-docker-sklearn-template

A simple example of python api for real time machine learning. On init, a simple linear regression model is created and saved on machine. On request arrival for prediction, the simple model is loaded and returning prediction.
For more information read this post

requirements

docker installed

Run on docker - local

docker build . -t {some tag name} -f ./Dockerfile_local
detached : docker run -p 3000:5000 -d {some tag name}
interactive (recommended for debug): docker run -p 3000:5000 -it {some tag name}

Run on docker - production

Using uWSGI and nginx for production
docker build . -t {some tag name}
detached : docker run -p 3000:80 -d {some tag name}
interactive (recommended for debug): docker run -p 3000:80 -it {some tag name}

Run on local computer

python -m venv env
source env/bin/activate
python -m pip install -r ./requirements.txt
python main.py

Use sample api

127.0.0.1:3000/isAlive
127.0.0.1:3000/prediction/api/v1.0/some_prediction?f1=4&f2=4&f3=4

About

A simple example of python api for real time machine learning, using scikit-learn, Flask and Docker

Resources

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 84.6%
  • Dockerfile 15.4%