A platform for profiling candidates in Brazilian 2022 General Election, based entirely on open data.
This project requires Docker and Docker Compose.
To run the API, you must copy the .env.sample
to a .env
file. You can edit
it accordingly if you want run in a production env.
You need to create the docker container:
$ docker-compose up -d
Note: You can use
docker compose
instead ofdocker-compose
in this project.
You should create your database by applying migrations:
$ docker-compose run --rm django ./manage.py migrate
To run the project locally, you can simply use this command:
$ docker-compose up
The website and API will be available at
localhost:8000
and the Jupyter at
localhost:8888
.
Your local data/
directory is mapped, inside the container, to /mnt/data
.
Each command uses a CSV (compressed as .xz
or not) from a public and
available source. Use --help
for more info. Yet some extra data can be
generated with some Django custom commands.
Once you have download the datasets to data/
, you can create your own database from scratch
running:
$ docker-compose run --rm django ./manage.py load_affiliations /mnt/data/filiacao.csv
$ docker-compose run --rm django ./manage.py load_candidates /mnt/data/candidatura.csv
$ docker-compose run --rm django ./manage.py link_affiliations_and_candidates
$ docker-compose run --rm django ./manage.py link_politicians_and_election_results
$ docker-compose run --rm django ./manage.py load_assets /mnt/data/bemdeclarado.csv
$ docker-compose run --rm django ./manage.py pre_calculate_stats
$ docker-compose run --rm django ./manage.py load_bills /mnt/data/senado.csv
$ docker-compose run --rm django ./manage.py load_bills /mnt/data/camara.csv
$ docker-compose run --rm django ./manage.py load_income_statements /mnt/data/receita.csv
# make sure to read the instructions on populate_company_info.sql before running the next command
$ docker-compose run --rm postgres psql -U perfilpolitico < populate_company_info.sql
⚠️ Note that it will change the primary keys for all candidates in the database! So be careful on running it for production environment because some endpoints as/api/candidate/<pk>/
depends on this primary key to retrieve the correct data.
Or you can update the data from your database using the commands:
$ docker-compose run --rm django ./manage.py unlink_and_delete_politician_references
$ docker-compose run --rm django ./manage.py load_affiliations /mnt/data/filiacao.csv clean-previous-data
$ docker-compose run --rm django ./manage.py update_or_create_candidates /mnt/data/candidatura.csv
$ docker-compose run --rm django ./manage.py link_affiliations_and_candidates
$ docker-compose run --rm django ./manage.py link_politicians_and_election_results
$ docker-compose run --rm django ./manage.py load_assets /mnt/data/bemdeclarado.csv clean-previous-data
$ docker-compose run --rm django ./manage.py pre_calculate_stats
$ docker-compose run --rm django ./manage.py load_bills /mnt/data/senado.csv clean-previous-data
$ docker-compose run --rm django ./manage.py load_bills /mnt/data/camara.csv
Note: The code only updates data coming from the csv's to the database. It does not consider the possibility of changing data that is already in the database but does not appear in the csv for some reason (in this case the data in the database is kept untouched). Commands passing the
clean-previous-data-option
will replace all the data for the respective csv, thus changing all primary keys.
List all candidates from a certain state to a given post. For example:
/api/candidate/2018/df/deputado-distrital/
Post options for 2018 are:
1o-suplente
2o-suplente
deputado-distrital
deputado-estadual
deputado-federal
governador
presidente
senador
vice-governador
vice-presidente
State options are the abbreviation of the 27 Brazilian states, plus br
for
national election posts.
Returns the details of a given candidate.
Get electoral income history for a given candidate and companies that have a partnership.
Returns an object with the structure:
{
"companies_associated_with_politician": [
{
"cnpj": string,
"company_name": string,
"main_cnae": string,
"secondary_cnaes": string (cnaes separated by ','),
"uf": string,
"foundation_date": string (date format 'YYYY/MM/DD'),
"participation_start_date": string (date format 'YYYY/MM/DD')
}
// ... other companies in the same format as above ...
],
"election_income_history": [
{
"year": int,
"value": float,
"donor_name": string,
"donor_taxpayer_id": string
"donor_company_name": string
"donor_company_cnpj": string
"donor_economic_sector_code": string,
"donor_secondary_sector_codes": string
},
// ... other income statements in the same format as above ...
]
}
Get national statistics for a given characteristic in a elected post.
Post options are:
deputado-distrital
deputado-estadual
deputado-federal
governador
prefeito
presidente
senador
vereador
Characteristic options are:
age
education
ethnicity
gender
marital_status
occupation
party
Same as above but aggregated by state.
Returns an object with a key called mediana_patrimonios
that is a list with
the median of elected people's asset value aggregated by year.
optionally
you can add query parameters to filter the results by state
or by
the candidate post
(the valid posts are the same ones that are in the list above).
These parameters can support multiple values if you wish to filter by more than one thing.
Ex: /api/asset-stats?state=MG&state=RJ&candidate_post=governador&candidate_post=prefeito
$ docker-compose run --rm django py.test
$ docker-compose run --rm django black . --check