Skip to content

noyami2033/GiantMIDI-Piano

This branch is up to date with bytedance/GiantMIDI-Piano:master.

Folders and files

NameName
Last commit message
Last commit date

Latest commit

author
kongqiuqiang
Jan 21, 2022
930d535 · Jan 21, 2022

History

31 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

GiantMIDI-Piano

GiantMIDI-Piano [1] is a classical piano MIDI dataset contains 10,855 MIDI files of 2,786 composers. The curated subset by constraining composer surnames contains 7,236 MIDI files of 1,787 composers. GiantMIDI-Piano are transcribed from live recordings with a high-resolution piano transcription system [2].

Here is the demo of GiantMIDI-Piano: https://www.youtube.com/watch?v=5U-WL0QvKCg

Transcribed MIDI files of GiantMIDI-Piano can be viewed at midis_preview directory.

Download GiantMIDI-Piano

Method 1 (suggested)

Follow disclaimer.md to agree a disclaimer and download a stable version of GiantMIDI-Piano (193 MB).

Method 2

Users can acquire GiantMIDI-Piano by downloading all audio recordings, and transcribing them into MIDI files following the rest part of this repo. The transcription takes ~200 hours on a single GPU card.

Install requirements

Install PyTorch (>=1.4) following https://pytorch.org/.

The above links also include a curated subset. The curated subset constrains the YouTube titles should contain composers surnames.

pip install -r requirements.txt

Download audio recordings

Download audio recordings from YouTube using the following scripts. Approximately 10,855 audio recordings can be downloaded. There can be audios no longer downloadable.

WORKSPACE="./workspace"
mkdir -p $WORKSPACE
cp "resources/full_music_pieces_youtube_similarity_pianosoloprob.csv" $WORKSPACE/"full_music_pieces_youtube_similarity_pianosoloprob.csv"

# Download all mp3s. Users could split the downloading into parts to speed up the downloading. E.g.,
python3 dataset.py download_youtube_piano_solo --workspace=$WORKSPACE --begin_index=0 --end_index=30000
python3 dataset.py download_youtube_piano_solo --workspace=$WORKSPACE --begin_index=30000 --end_index=60000
python3 dataset.py download_youtube_piano_solo --workspace=$WORKSPACE --begin_index=60000 --end_index=90000
python3 dataset.py download_youtube_piano_solo --workspace=$WORKSPACE --begin_index=90000 --end_index=120000
python3 dataset.py download_youtube_piano_solo --workspace=$WORKSPACE --begin_index=12000 --end_index=150000

The downloaded mp3 files look like:

mp3s_piano_solo (10,855 files)
├── Aaron, Michael, Piano Course, V8WvKK-1b2c.mp3
├── Aarons, Alfred E., Brother Bill, Giet2Krl6Ww.mp3
└── ...

Transcribe audios to MIDI files

# Transcribe all mp3s to midi files. Users could split the transcription into parts to speed up the transcription. E.g.,
python3 audios_to_midis.py transcribe_piano --workspace=$WORKSPACE --mp3s_dir=$WORKSPACE"/mp3s_piano_solo" --midis_dir=$WORKSPACE"/midis" --begin_ind=0 --end_index=30000
python3 audios_to_midis.py transcribe_piano --workspace=$WORKSPACE --mp3s_dir=$WORKSPACE"/mp3s_piano_solo" --midis_dir=$WORKSPACE"/midis" --begin_ind=30000 --end_index=60000
python3 audios_to_midis.py transcribe_piano --workspace=$WORKSPACE --mp3s_dir=$WORKSPACE"/mp3s_piano_solo" --midis_dir=$WORKSPACE"/midis" --begin_ind=60000 --end_index=90000
python3 audios_to_midis.py transcribe_piano --workspace=$WORKSPACE --mp3s_dir=$WORKSPACE"/mp3s_piano_solo" --midis_dir=$WORKSPACE"/midis" --begin_ind=90000 --end_index=120000
python3 audios_to_midis.py transcribe_piano --workspace=$WORKSPACE --mp3s_dir=$WORKSPACE"/mp3s_piano_solo" --midis_dir=$WORKSPACE"/midis" --begin_ind=120000 --end_index=150000

The transcribed MIDI files look like:

midis (10,855 files)
├── Aaron, Michael, Piano Course, V8WvKK-1b2c.mid
├── Abel, Frederic, Lola Polka, SLNJF0uiqRw.mid
└── ...

The transcription of all audio recordings may take around 10 days on a single GPU card.

Details of scripts can be viewed at scripts

Analyses the statistics of GiantMIDI-Piano

All statistics and figures in [1] can be reproduced by:

./scripts/3_statistics.sh

FAQ

If users met "Too many requests! Sleep for 3600 s" when downloading, it means that YouTube has limited the number of videos for downloading. Users could either 1) Wait until YouTube unblock your IP (1 days or a few weeks), or 2) try to use another machine with a different IP for downloading.

Contact

Qiuqiang Kong, [email protected]

Cite

[1] Qiuqiang Kong, Bochen Li, Jitong Chen, and Yuxuan Wang. "GiantMIDI-Piano: A large-scale MIDI dataset for classical piano music." arXiv preprint arXiv:2010.07061 (2020). https://arxiv.org/pdf/2010.07061

License

CC BY 4.0

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 95.5%
  • Shell 4.5%