-
-
Notifications
You must be signed in to change notification settings - Fork 540
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Refactor optimize/train/test into single RLTrader class.
- Loading branch information
1 parent
5486766
commit 147e6e1
Showing
18 changed files
with
434 additions
and
587 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,252 @@ | ||
import optuna | ||
import pandas as pd | ||
import numpy as np | ||
|
||
from os import path | ||
from stable_baselines.common.base_class import BaseRLModel | ||
from stable_baselines.common.policies import BasePolicy, MlpLnLstmPolicy | ||
from stable_baselines.common.vec_env import DummyVecEnv | ||
from stable_baselines import PPO2 | ||
|
||
from lib.env.BitcoinTradingEnv import BitcoinTradingEnv | ||
from lib.util.indicators import add_indicators | ||
from lib.util.log import init_logger | ||
|
||
|
||
class RLTrader: | ||
feature_df = None | ||
|
||
def __init__(self, model: BaseRLModel = PPO2, policy: BasePolicy = MlpLnLstmPolicy, **kwargs): | ||
self.logger = init_logger( | ||
__name__, show_debug=kwargs.get('show_debug', True)) | ||
|
||
self.model = model | ||
self.policy = policy | ||
self.reward_strategy = kwargs.get('reward_strategy', 'sortino') | ||
self.tensorboard_path = kwargs.get( | ||
'tensorboard_path', path.join('data', 'tensorboard')) | ||
self.input_data_path = kwargs.get('input_data_path', None) | ||
self.params_db_path = kwargs.get( | ||
'params_db_path', 'sqlite:///data/params.db') | ||
|
||
self.model_verbose = kwargs.get('model_verbose', 1) | ||
self.nminibatches = kwargs.get('nminibatches', 1) | ||
|
||
self.initialize_data(kwargs) | ||
|
||
self.logger.debug(f'Reward Strategy: {self.reward_strategy}') | ||
|
||
def initialize_data(self, kwargs): | ||
if self.input_data_path is None: | ||
self.input_data_path = path.join( | ||
'data', 'input', 'coinbase_hourly.csv') | ||
|
||
self.feature_df = pd.read_csv(self.input_data_path) | ||
self.feature_df = self.feature_df.drop(['Symbol'], axis=1) | ||
self.feature_df['Date'] = pd.to_datetime( | ||
self.feature_df['Date'], format='%Y-%m-%d %I-%p') | ||
self.feature_df['Date'] = self.feature_df['Date'].astype(str) | ||
self.feature_df = self.feature_df.sort_values(['Date']) | ||
self.feature_df = add_indicators(self.feature_df.reset_index()) | ||
|
||
self.validation_set_percentage = kwargs.get( | ||
'validation_set_percentage', 0.8) | ||
self.test_set_percentage = kwargs.get('test_set_percentage', 0.8) | ||
|
||
self.logger.debug( | ||
f'Initialized Features: {self.feature_df.columns.str.cat(sep=", ")}') | ||
|
||
def initialize_optuna(self, should_create: bool = False): | ||
self.study_name = f'{self.model.__class__.__name__}__{self.policy.__class__.__name__}__{self.reward_strategy}' | ||
|
||
if should_create: | ||
self.optuna_study = optuna.create_study( | ||
study_name=self.study_name, storage=self.params_db_path, load_if_exists=True) | ||
else: | ||
self.optuna_study = optuna.load_study( | ||
study_name=self.study_name, storage=self.params_db_path) | ||
|
||
self.logger.debug('Initialized Optuna:') | ||
|
||
try: | ||
self.logger.debug( | ||
f'Best reward in ({len(self.optuna_study.trials)}) trials: {-self.optuna_study.best_value}') | ||
except: | ||
self.logger.debug('No trials have been finished yet.') | ||
|
||
def get_env_params(self): | ||
params = self.optuna_study.best_trial.params | ||
return { | ||
'reward_strategy': self.reward_strategy, | ||
'forecast_steps': int(params['forecast_steps']), | ||
'forecast_alpha': params['forecast_alpha'], | ||
} | ||
|
||
def get_model_params(self): | ||
params = self.optuna_study.best_trial.params | ||
return { | ||
'n_steps': int(params['n_steps']), | ||
'gamma': params['gamma'], | ||
'learning_rate': params['learning_rate'], | ||
'ent_coef': params['ent_coef'], | ||
'cliprange': params['cliprange'], | ||
'noptepochs': int(params['noptepochs']), | ||
'lam': params['lam'], | ||
} | ||
|
||
def optimize_env_params(self, trial): | ||
return { | ||
'forecast_steps': int(trial.suggest_loguniform('forecast_steps', 1, 200)), | ||
'forecast_alpha': trial.suggest_uniform('forecast_alpha', 0.001, 0.30), | ||
} | ||
|
||
def optimize_agent_params(self, trial): | ||
if self.model != PPO2: | ||
return {'learning_rate': trial.suggest_loguniform('learning_rate', 1e-5, 1.)} | ||
|
||
return { | ||
'n_steps': int(trial.suggest_loguniform('n_steps', 16, 2048)), | ||
'gamma': trial.suggest_loguniform('gamma', 0.9, 0.9999), | ||
'learning_rate': trial.suggest_loguniform('learning_rate', 1e-5, 1.), | ||
'ent_coef': trial.suggest_loguniform('ent_coef', 1e-8, 1e-1), | ||
'cliprange': trial.suggest_uniform('cliprange', 0.1, 0.4), | ||
'noptepochs': int(trial.suggest_loguniform('noptepochs', 1, 48)), | ||
'lam': trial.suggest_uniform('lam', 0.8, 1.) | ||
} | ||
|
||
def optimize_params(self, trial, n_prune_evals_per_trial: int = 4, n_tests_per_eval: int = 1, speedup_factor: int = 10): | ||
env_params = self.optimize_env_params(trial) | ||
|
||
full_train_len = self.test_set_percentage * len(self.feature_df) | ||
optimize_train_len = int( | ||
self.validation_set_percentage * full_train_len) | ||
train_len = int(optimize_train_len / speedup_factor) | ||
train_start = optimize_train_len - train_len | ||
|
||
train_df = self.feature_df[train_start:optimize_train_len] | ||
validation_df = self.feature_df[optimize_train_len:] | ||
|
||
train_env = DummyVecEnv( | ||
[lambda: BitcoinTradingEnv(train_df, **env_params)]) | ||
validation_env = DummyVecEnv( | ||
[lambda: BitcoinTradingEnv(validation_df, **env_params)]) | ||
|
||
model_params = self.optimize_agent_params(trial) | ||
model = self.model(self.policy, train_env, verbose=self.model_verbose, nminibatches=self.nminibatches, | ||
tensorboard_log=self.tensorboard_path, **model_params) | ||
|
||
last_reward = -np.finfo(np.float16).max | ||
evaluation_interval = int( | ||
train_len / n_prune_evals_per_trial) | ||
|
||
for eval_idx in range(n_prune_evals_per_trial): | ||
try: | ||
model.learn(evaluation_interval) | ||
except AssertionError: | ||
raise | ||
|
||
rewards = [] | ||
n_episodes, reward_sum = 0, 0.0 | ||
|
||
obs = validation_env.reset() | ||
while n_episodes < n_tests_per_eval: | ||
action, _ = model.predict(obs) | ||
obs, reward, done, _ = validation_env.step(action) | ||
reward_sum += reward | ||
|
||
if done: | ||
rewards.append(reward_sum) | ||
reward_sum = 0.0 | ||
n_episodes += 1 | ||
obs = validation_env.reset() | ||
|
||
last_reward = np.mean(rewards) | ||
trial.report(-1 * last_reward, eval_idx) | ||
|
||
if trial.should_prune(eval_idx): | ||
raise optuna.structs.TrialPruned() | ||
|
||
return -1 * last_reward | ||
|
||
def optimize(self, n_trials: int = 10, n_parallel_jobs: int = 4, *optimize_params): | ||
self.initialize_optuna(should_create=True) | ||
|
||
try: | ||
self.optuna_study.optimize( | ||
self.optimize_params, n_trials=n_trials, n_jobs=n_parallel_jobs, *optimize_params) | ||
except KeyboardInterrupt: | ||
pass | ||
|
||
self.logger.info(f'Finished trials: {len(self.optuna_study.trials)}') | ||
|
||
self.logger.info(f'Best trial: {self.optuna_study.best_trial.value}') | ||
|
||
self.logger.info('Params: ') | ||
for key, value in self.optuna_study.best_trial.params.items(): | ||
self.logger.info(f' {key}: {value}') | ||
|
||
return self.optuna_study.trials_dataframe() | ||
|
||
def train(self, n_epochs: int = 1, iters_per_epoch: int = 1, test_trained_model: bool = False, render_trained_model: bool = False): | ||
self.initialize_optuna() | ||
|
||
env_params = self.get_env_params() | ||
|
||
train_len = int(self.test_set_percentage * len(self.feature_df)) | ||
train_df = self.feature_df[:train_len] | ||
|
||
train_env = DummyVecEnv( | ||
[lambda: BitcoinTradingEnv(train_df, **env_params)]) | ||
|
||
model_params = self.get_model_params() | ||
|
||
model = self.model(self.policy, train_env, verbose=self.model_verbose, nminibatches=self.nminibatches, | ||
tensorboard_log=self.tensorboard_path, **model_params) | ||
|
||
self.logger.info(f'Training for {n_epochs} epochs') | ||
|
||
n_timesteps = len(train_df) * iters_per_epoch | ||
|
||
for model_epoch in range(0, n_epochs): | ||
self.logger.info( | ||
f'[{model_epoch}] Training for: {n_timesteps} time steps') | ||
|
||
model.learn(total_timesteps=n_timesteps) | ||
|
||
model_path = path.join( | ||
'data', 'agents', f'{self.study_name}__{model_epoch}.pkl') | ||
model.save(model_path) | ||
|
||
if test_trained_model: | ||
self.test(model_epoch, should_render=render_trained_model) | ||
|
||
self.logger.info(f'Trained {n_epochs} models') | ||
|
||
def test(self, model_epoch: int = 0, should_render: bool = True): | ||
env_params = self.get_env_params() | ||
|
||
train_len = int(self.test_set_percentage * len(self.feature_df)) | ||
test_df = self.feature_df[train_len:] | ||
|
||
test_env = DummyVecEnv( | ||
[lambda: BitcoinTradingEnv(test_df, **env_params)]) | ||
|
||
model_path = path.join( | ||
'data', 'agents', f'{self.study_name}__{model_epoch}.pkl') | ||
model = self.model.load(model_path, env=test_env) | ||
|
||
self.logger.info( | ||
f'Testing model ({self.study_name}__{model_epoch})') | ||
|
||
obs, done, reward_sum = test_env.reset(), False, 0 | ||
while not done: | ||
action, _states = model.predict(obs) | ||
obs, reward, done, _ = test_env.step(action) | ||
|
||
reward_sum += reward | ||
|
||
if should_render: | ||
test_env.render(mode='human') | ||
|
||
self.logger.info( | ||
f'Finished testing model ({self.study_name}__{model_epoch}): ${"{:.2f}".format(reward_sum)}') |
File renamed without changes.
Binary file not shown.
Oops, something went wrong.