Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add conditional mean and cov #39

Merged
merged 3 commits into from
Sep 24, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
32 changes: 32 additions & 0 deletions tests/test_conditional.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,32 @@
import jax
from jax import numpy as jnp

import thermox


def test_mean_and_cov():
jax.config.update("jax_enable_x64", True)
dim = 2
t = 1.0

A = jnp.array([[3, 2.5], [2, 4.0]])
b = jax.random.normal(jax.random.PRNGKey(1), (dim,))
x0 = jax.random.normal(jax.random.PRNGKey(2), (dim,))
D = 2 * jnp.eye(dim)

mean = thermox.conditional.mean(t, x0, A, b, D)
samples = jax.vmap(
lambda k: thermox.sample(k, jnp.array([0.0, t]), x0, A, b, D)[-1]
)(jax.random.split(jax.random.PRNGKey(0), 1000000))
assert mean.shape == (dim,)
assert jnp.allclose(mean, jnp.mean(samples, axis=0), atol=1e-2)

cov = thermox.conditional.covariance(t, A, D)
assert cov.shape == (dim, dim)
assert jnp.allclose(cov, jnp.cov(samples.T), atol=1e-3)

mean_and_cov = thermox.conditional.mean_and_covariance(t, x0, A, b, D)
assert mean_and_cov[0].shape == (dim,)
assert mean_and_cov[1].shape == (dim, dim)
assert jnp.allclose(mean_and_cov[0], mean, atol=1e-5)
assert jnp.allclose(mean_and_cov[1], cov, atol=1e-5)
20 changes: 9 additions & 11 deletions tests/test_log_prob.py
Original file line number Diff line number Diff line change
Expand Up @@ -91,42 +91,40 @@ def test_MLE():
D_true = jnp.array([[1, 0.3, -0.1], [0.3, 1, 0.2], [-0.1, 0.2, 1.0]])

nts = 300
ts = jnp.linspace(0, 10, nts)
ts = jnp.linspace(0, 100, nts)
x0 = jnp.zeros_like(b_true)

n_trajecs = 3
n_trajecs = 5
rks = jax.random.split(jax.random.PRNGKey(0), n_trajecs)

samps = jax.vmap(lambda key: thermox.sample(key, ts, x0, A_true, b_true, D_true))(
rks
)

A_sqrt_init = jnp.tril(jnp.eye(3) + jax.random.normal(rks[0], (3, 3)) * 1e-1)
A_init = jnp.eye(3) + jax.random.normal(rks[0], (3, 3)) * 1e-1
b_init = jnp.zeros(3)
D_sqrt_init = jnp.eye(3)

log_prob_true = thermox.log_prob(ts, samps[0], A_true, b_true, D_true)
log_prob_init = thermox.log_prob(
ts, samps[0], A_sqrt_init @ A_sqrt_init.T, b_init, D_sqrt_init @ D_sqrt_init.T
ts, samps[0], A_init, b_init, D_sqrt_init @ D_sqrt_init.T
)

assert log_prob_true > log_prob_init

# Gradient descent
def loss(params):
A_sqrt, b, D_sqrt = params
A_sqrt = jnp.tril(A_sqrt)
A, b, D_sqrt = params
D_sqrt = jnp.tril(D_sqrt)
A = A_sqrt @ A_sqrt.T
D = D_sqrt @ D_sqrt.T
return -jax.vmap(lambda s: thermox.log_prob(ts, s, A, b, D))(
samps
).mean() / len(ts)

val_and_g = jax.jit(jax.value_and_grad(loss))

ps = (A_sqrt_init, b_init, D_sqrt_init)
ps_true = (jnp.linalg.cholesky(A_true), b_true, jnp.linalg.cholesky(D_true))
ps = (A_init, b_init, D_sqrt_init)
ps_true = (A_true, b_true, jnp.linalg.cholesky(D_true))

v, g = val_and_g(ps)
v_true, g_true = val_and_g(ps_true)
Expand All @@ -138,7 +136,7 @@ def loss(params):
n_steps = 20000
neg_log_probs = jnp.zeros(n_steps)

optimizer = optax.adam(1e-2)
optimizer = optax.adam(1e-3)
opt_state = optimizer.init(ps)

for i in range(n_steps):
Expand All @@ -149,7 +147,7 @@ def loss(params):
ps = optax.apply_updates(ps, updates)
neg_log_probs = neg_log_probs.at[i].set(neg_log_prob)

A_recover = ps[0] @ ps[0].T
A_recover = ps[0]
b_recover = ps[1]
D_recover = ps[2] @ ps[2].T

Expand Down
1 change: 1 addition & 0 deletions thermox/__init__.py
Original file line number Diff line number Diff line change
@@ -1,4 +1,5 @@
from thermox import linalg
from thermox import conditional
from thermox.sampler import sample
from thermox.prob import log_prob
from thermox.utils import preprocess
Expand Down
98 changes: 98 additions & 0 deletions thermox/conditional.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,98 @@
from jax import numpy as jnp
from jax import Array

from thermox.utils import (
ProcessedDriftMatrix,
ProcessedDiffusionMatrix,
handle_matrix_inputs,
)
from thermox.sampler import expm_vp


def mean(
t: float,
x0: Array,
A: Array | ProcessedDriftMatrix,
b: Array,
D: Array | ProcessedDiffusionMatrix,
) -> Array:
"""Computes the mean of p(x_t | x_0)

For x_t evolving according to the SDE:

dx = - A * (x - b) dt + sqrt(D) dW

Args:
ts: Times at which samples are collected. Includes time for x0.
x0: Initial state of the process.
A: Drift matrix (Array or thermox.ProcessedDriftMatrix).
Note: If a thermox.ProcessedDriftMatrix instance is used as input,
must be the transformed drift matrix, A_y, given by thermox.preprocess,
not thermox.utils.preprocess_drift_matrix.
b: Drift displacement vector.
D: Diffusion matrix (Array or thermox.ProcessedDiffusionMatrix).

"""
A_y, D = handle_matrix_inputs(A, D)

y0 = D.sqrt_inv @ (x0 - b)
return b + D.sqrt @ expm_vp(A_y, y0, t)


def covariance(
t: float,
A: Array | ProcessedDriftMatrix,
D: Array | ProcessedDiffusionMatrix,
) -> Array:
"""Computes the covariance of p(x_t | x_0)

For x evolving according to the SDE:

dx = - A * (x - b) dt + sqrt(D) dW

Args:
ts: Times at which samples are collected. Includes time for x0.
A: Drift matrix (Array or thermox.ProcessedDriftMatrix).
Note: If a thermox.ProcessedDriftMatrix instance is used as input,
must be the transformed drift matrix, A_y, given by thermox.preprocess,
not thermox.utils.preprocess_drift_matrix.
D: Diffusion matrix (Array or thermox.ProcessedDiffusionMatrix).
"""
A_y, D = handle_matrix_inputs(A, D)

identity_diffusion_cov = (
A_y.sym_eigvecs
@ jnp.diag((1 - jnp.exp(-2 * A_y.sym_eigvals * t)) / (2 * A_y.sym_eigvals))
@ A_y.sym_eigvecs.T
)
return D.sqrt @ identity_diffusion_cov @ D.sqrt.T


def mean_and_covariance(
t: float,
x0: Array,
A: Array | ProcessedDriftMatrix,
b: Array,
D: Array | ProcessedDiffusionMatrix,
) -> tuple[Array, Array]:
"""Computes the mean and covariance of p(x_t | x_0)

For x evolving according to the SDE:

dx = - A * (x - b) dt + sqrt(D) dW

Args:
ts: Times at which samples are collected. Includes time for x0.
x0: Initial state of the process.
A: Drift matrix (Array or thermox.ProcessedDriftMatrix).
Note: If a thermox.ProcessedDriftMatrix instance is used as input,
must be the transformed drift matrix, A_y, given by thermox.preprocess,
not thermox.utils.preprocess_drift_matrix.
b: Drift displacement vector.
D: Diffusion matrix (Array or thermox.ProcessedDiffusionMatrix).

"""
A, D = handle_matrix_inputs(A, D)
mean_val = mean(t, x0, A, b, D)
covariance_val = covariance(t, A, D)
return mean_val, covariance_val
2 changes: 1 addition & 1 deletion thermox/prob.py
Original file line number Diff line number Diff line change
Expand Up @@ -36,7 +36,7 @@ def log_prob(

Args:
ts: Times at which samples are collected. Includes time for x0.
xs: Initial state of the process.
xs: States of the process.
A: Drift matrix (Array or thermox.ProcessedDriftMatrix).
Note: If a thermox.ProcessedDriftMatrix instance is used as input,
must be the transformed drift matrix, A_y, given by thermox.preprocess,
Expand Down