A Python client for SplineCloud API
The client library is based on SciPy and allows to load data and curves from SplineCloud into your code. Once loaded spline curves can be easily evaluated.
pip install splinecloud-scipy
from splinecloud_scipy import load_spline
curve_id = 'spl_K5t56P5bormJ' # take curve ID from the 'API link' dropdown at SplineCloud
spline = load_spline(curve_id)
import numpy as np
import matplotlib.pyplot as plt
X = np.linspace(0, 20, 100)
Y = [spline.eval(x) for x in X]
plt.plot(X,Y)
plt.grid()
plt.show()
columns, table = spline.load_data()
x_data, y_data = table.T
plt.plot(X,Y)
plt.plot(x_data, y_data, 'o', color="grey")
plt.grid()
plt.xlabel(columns[0])
plt.ylabel(columns[1])
plt.show()
RMSE = spline.fit_accuracy(table, method="RMSE")
print(RMSE)
0.011307453345329156
from splinecloud_scipy import load_subset
subset_id = 'sbt_nDO4XmmYqeGI' # subset id can be taken from the SplineCloud
columns, table = load_subset(subset_id)
>>> columns
['Throttle (%)',
'Load Currency (A)',
'Pull (g)',
'Power (W)',
'Efficiency (g/W)']
>>> table
array([[5.0000e-01, 6.7600e+00, 3.8500e+02, 1.0871e+02, 3.5420e+00],
[6.0000e-01, 1.0200e+01, 4.9500e+02, 1.6249e+02, 3.0460e+00],
[7.0000e-01, 1.3580e+01, 6.0600e+02, 2.1768e+02, 2.7840e+00],
[8.0000e-01, 1.7390e+01, 6.8700e+02, 2.7140e+02, 2.5510e+00],
[9.0000e-01, 2.1030e+01, 7.4700e+02, 3.2813e+02, 2.2770e+00],
[1.0000e+00, 2.5060e+01, 8.0700e+02, 3.8555e+02, 2.0930e+00]])
These examples are available as notebooks in the project's 'examples' folder.
This library supports BSpline geometry but does not support weighted BSplines (NURBS). If you adjust the weights of the curve control points use another client, that supports NURBS (a link will be provided here soon).