Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Refactor app_tests/integration_tests/llm for easy addition of more models for testing #728

Merged
merged 3 commits into from
Jan 14, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
17 changes: 17 additions & 0 deletions app_tests/integration_tests/llm/device_settings.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,17 @@
from typing import Tuple
from dataclasses import dataclass


@dataclass
class DeviceSettings:
compile_flags: Tuple[str]
server_flags: Tuple[str]


CPU = DeviceSettings(
compile_flags=(
"-iree-hal-target-backends=llvm-cpu",
"--iree-llvmcpu-target-cpu=host",
),
server_flags=("--device=local-task",),
)
227 changes: 227 additions & 0 deletions app_tests/integration_tests/llm/model_management.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,227 @@
"""Module for managing model artifacts through various processing stages."""
import logging
from pathlib import Path
import subprocess
from dataclasses import dataclass
from typing import Optional, Tuple
from enum import Enum, auto

logger = logging.getLogger(__name__)


class ModelSource(Enum):
HUGGINGFACE = auto()
LOCAL = auto()
AZURE = auto()


@dataclass
class AzureConfig:
"""Configuration for Azure blob storage downloads."""

account_name: str
container_name: str
blob_path: str
auth_mode: str = "key"


@dataclass
class ModelConfig:
"""Configuration for model source and settings."""

model_file: str
tokenizer_id: str
batch_sizes: Tuple[int, ...]
device_settings: "DeviceSettings"
source: ModelSource
repo_id: Optional[str] = None
local_path: Optional[Path] = None
azure_config: Optional[AzureConfig] = None

def __post_init__(self):
if self.source == ModelSource.HUGGINGFACE and not self.repo_id:
raise ValueError("repo_id required for HuggingFace models")
elif self.source == ModelSource.LOCAL and not self.local_path:
raise ValueError("local_path required for local models")
elif self.source == ModelSource.AZURE and not self.azure_config:
raise ValueError("azure_config required for Azure models")


@dataclass
class ModelArtifacts:
"""Container for all paths related to model artifacts."""

weights_path: Path
tokenizer_path: Path
mlir_path: Path
vmfb_path: Path
config_path: Path


class ModelStageManager:
stbaione marked this conversation as resolved.
Show resolved Hide resolved
"""Manages different stages of model processing with caching behavior."""

def __init__(self, base_dir: Path, config: ModelConfig):
self.base_dir = base_dir
self.config = config
self.model_dir = self._get_model_dir()
self.model_dir.mkdir(parents=True, exist_ok=True)

def _get_model_dir(self) -> Path:
"""Creates and returns appropriate model directory based on source."""
if self.config.source == ModelSource.HUGGINGFACE:
return self.base_dir / self.config.repo_id.replace("/", "_")
elif self.config.source == ModelSource.LOCAL:
return self.base_dir / "local" / self.config.local_path.stem
elif self.config.source == ModelSource.AZURE:
return (
self.base_dir
/ "azure"
/ self.config.azure_config.blob_path.replace("/", "_")
)
raise ValueError(f"Unsupported model source: {self.config.source}")

def _download_from_huggingface(self) -> Path:
"""Downloads model from HuggingFace."""
model_path = self.model_dir / self.config.model_file
if not model_path.exists():
logger.info(f"Downloading model {self.config.repo_id} from HuggingFace")
subprocess.run(
f"huggingface-cli download --local-dir {self.model_dir} {self.config.repo_id} {self.config.model_file}",
shell=True,
check=True,
)
return model_path

def _copy_from_local(self) -> Path:
"""Copies model from local filesystem."""
import shutil

model_path = self.model_dir / self.config.model_file
if not model_path.exists():
logger.info(f"Copying local model from {self.config.local_path}")
shutil.copy2(self.config.local_path, model_path)
return model_path

def _download_from_azure(self) -> Path:
"""Downloads model from Azure blob storage."""
model_path = self.model_dir / self.config.model_file
if not model_path.exists():
logger.info(
f"Downloading model from Azure blob storage: {self.config.azure_config.blob_path}"
)
subprocess.run(
[
"az",
"storage",
"blob",
"download",
"--account-name",
self.config.azure_config.account_name,
"--container-name",
self.config.azure_config.container_name,
"--name",
self.config.azure_config.blob_path,
"--file",
str(model_path),
"--auth-mode",
self.config.azure_config.auth_mode,
],
check=True,
)
return model_path

def prepare_tokenizer(self) -> Path:
"""Downloads and prepares tokenizer."""
tokenizer_path = self.model_dir / "tokenizer.json"
if not tokenizer_path.exists():
logger.info(f"Downloading tokenizer {self.config.tokenizer_id}")
from transformers import AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained(self.config.tokenizer_id)
tokenizer.save_pretrained(self.model_dir)
return tokenizer_path

def export_model(self, weights_path: Path) -> Tuple[Path, Path]:
"""Exports model to MLIR format."""
bs_string = ",".join(map(str, self.config.batch_sizes))
mlir_path = self.model_dir / "model.mlir"
config_path = self.model_dir / "config.json"

logger.info(
"Exporting model with following settings:\n"
f" MLIR Path: {mlir_path}\n"
f" Config Path: {config_path}\n"
f" Batch Sizes: {bs_string}"
)

subprocess.run(
[
"python",
"-m",
"sharktank.examples.export_paged_llm_v1",
"--block-seq-stride=16",
f"--{weights_path.suffix.strip('.')}-file={weights_path}",
f"--output-mlir={mlir_path}",
f"--output-config={config_path}",
f"--bs={bs_string}",
],
check=True,
)

logger.info(f"Model successfully exported to {mlir_path}")
return mlir_path, config_path

def compile_model(self, mlir_path: Path) -> Path:
"""Compiles model to VMFB format."""
vmfb_path = self.model_dir / "model.vmfb"
logger.info(f"Compiling model to {vmfb_path}")

compile_command = [
"iree-compile",
str(mlir_path),
"-o",
str(vmfb_path),
]
compile_command.extend(self.config.device_settings.compile_flags)

subprocess.run(compile_command, check=True)
logger.info(f"Model successfully compiled to {vmfb_path}")
return vmfb_path


class ModelProcessor:
"""Main interface for processing models through all stages."""

def __init__(self, base_dir: Path):
self.base_dir = Path(base_dir)

def process_model(self, config: ModelConfig) -> ModelArtifacts:
"""Process model through all stages and return paths to all artifacts."""
manager = ModelStageManager(self.base_dir, config)

# Stage 1: Download weights and tokenizer (cached)
if config.source == ModelSource.HUGGINGFACE:
weights_path = manager._download_from_huggingface()
elif config.source == ModelSource.LOCAL:
weights_path = manager._copy_from_local()
elif config.source == ModelSource.AZURE:
weights_path = manager._download_from_azure()
else:
raise ValueError(f"Unsupported model source: {config.source}")

tokenizer_path = manager.prepare_tokenizer()

# Stage 2: Export model (fresh every time)
mlir_path, config_path = manager.export_model(weights_path)

# Stage 3: Compile model (fresh every time)
vmfb_path = manager.compile_model(mlir_path)

return ModelArtifacts(
weights_path=weights_path,
tokenizer_path=tokenizer_path,
mlir_path=mlir_path,
vmfb_path=vmfb_path,
config_path=config_path,
)
126 changes: 126 additions & 0 deletions app_tests/integration_tests/llm/server_management.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,126 @@
"""Handles server lifecycle and configuration."""
import json
import socket
from contextlib import closing
from dataclasses import dataclass
import subprocess
import time
import requests
from pathlib import Path
import sys
from typing import Optional

from .device_settings import DeviceSettings
from .model_management import ModelArtifacts


@dataclass
class ServerConfig:
"""Configuration for server instance."""

artifacts: ModelArtifacts
device_settings: DeviceSettings
prefix_sharing_algorithm: str = "none"


class ServerInstance:
"""An instance of the shortfin llm inference server.

Example usage:

```
from shortfin_apps.llm.server_management import ServerInstance, ServerConfig
# Create and start server
server = Server(config=ServerConfig(
artifacts=model_artifacts,
device_settings=device_settings,
prefix_sharing_algorithm="none"
))

server.start() # This starts the server and waits for it to be ready

# Use the server
print(f"Server running on port {server.port}")

# Cleanup when done
server.stop()
```
"""

def __init__(self, config: ServerConfig):
self.config = config
self.process: Optional[subprocess.Popen] = None
self.port: Optional[int] = None
self.config_path: Optional[Path] = None

@staticmethod
def find_available_port() -> int:
"""Finds an available port for the server."""
with closing(socket.socket(socket.AF_INET, socket.SOCK_STREAM)) as s:
s.bind(("", 0))
s.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
return s.getsockname()[1]

def _write_config(self) -> Path:
"""Creates server config by extending the exported model config."""
# TODO: eliminate this by moving prefix sharing algorithm to be a cmdline arg of server.py
source_config_path = self.config.artifacts.config_path
server_config_path = (
source_config_path.parent
/ f"server_config_{self.config.prefix_sharing_algorithm}.json"
)

# Read the exported config as base
with open(source_config_path) as f:
config = json.load(f)
config["paged_kv_cache"][
"prefix_sharing_algorithm"
] = self.config.prefix_sharing_algorithm
with open(server_config_path, "w") as f:
json.dump(config, f)
return server_config_path

def start(self) -> None:
"""Starts the server process."""
if self.process is not None:
raise RuntimeError("Server is already running")

self.config_path = self._write_config()
self.port = self.find_available_port()

cmd = [
sys.executable,
"-m",
"shortfin_apps.llm.server",
f"--tokenizer_json={self.config.artifacts.tokenizer_path}",
f"--model_config={self.config_path}",
f"--vmfb={self.config.artifacts.vmfb_path}",
f"--parameters={self.config.artifacts.weights_path}",
f"--port={self.port}",
]
cmd.extend(self.config.device_settings.server_flags)

self.process = subprocess.Popen(cmd)
self.wait_for_ready()

def wait_for_ready(self, timeout: int = 10) -> None:
"""Waits for server to be ready and responding to health checks."""
if self.port is None:
raise RuntimeError("Server hasn't been started")

start = time.time()
while time.time() - start < timeout:
try:
requests.get(f"http://localhost:{self.port}/health")
return
except requests.exceptions.ConnectionError:
time.sleep(1)
raise TimeoutError(f"Server failed to start within {timeout} seconds")

def stop(self) -> None:
"""Stops the server process."""
if self.process is not None and self.process.poll() is None:
self.process.terminate()
self.process.wait()
self.process = None
self.port = None
Loading
Loading