Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Update tooling to export toy LLaMa model #617

Merged
merged 2 commits into from
Nov 27, 2024
Merged
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Next Next commit
Update tooling to export toy LLaMa model
We can export a toy version of the llama model with deterministic
coefficients and structure. This allows simple compilation testing from
sharktank through IREE.
rsuderman committed Nov 27, 2024

Verified

This commit was created on GitHub.com and signed with GitHub’s verified signature.
commit a7c956f0ca690a78f08e588194ba053f06c9244d
16 changes: 11 additions & 5 deletions sharktank/sharktank/layers/testing.py
Original file line number Diff line number Diff line change
@@ -12,6 +12,7 @@

def make_llama_attention_block_theta(
*,
block_idx: int,
head_count: int,
head_count_kv: int,
head_dim: int,
@@ -21,25 +22,30 @@ def make_llama_attention_block_theta(
return Theta(
{
"attn_q.weight": DefaultPrimitiveTensor(
name=f"blk.{block_idx}.attn_q.weight",
data=make_rand_torch(
(head_count * head_dim, embedding_length), dtype=dtype
)
),
),
"attn_k.weight": DefaultPrimitiveTensor(
name=f"blk.{block_idx}.attn_k.weight",
data=make_rand_torch(
(head_count_kv * head_dim, embedding_length), dtype=dtype
)
),
),
"attn_v.weight": DefaultPrimitiveTensor(
name=f"blk.{block_idx}.attn_v.weight",
data=make_rand_torch(
(head_count_kv * head_dim, embedding_length), dtype=dtype
)
),
),
"attn_output.weight": DefaultPrimitiveTensor(
data=make_rand_torch((embedding_length, embedding_length), dtype=dtype)
name=f"blk.{block_idx}.attn_output.weight",
data=make_rand_torch((embedding_length, embedding_length), dtype=dtype),
),
"attn_norm.weight": DefaultPrimitiveTensor(
data=make_rand_torch((embedding_length), dtype=dtype)
name=f"blk.{block_idx}.attn_norm.weight",
data=make_rand_torch((embedding_length), dtype=dtype),
),
}
)
40 changes: 27 additions & 13 deletions sharktank/sharktank/models/llama/testing.py
Original file line number Diff line number Diff line change
@@ -57,6 +57,7 @@ def make_attention_block_theta(

def make_attention_block_ffn_theta_v2(
*,
block_idx: int,
head_count: int,
head_count_kv: int,
head_dim: int,
@@ -65,6 +66,7 @@ def make_attention_block_ffn_theta_v2(
dtype: torch.dtype | None = None,
) -> Theta:
attention_theta = make_llama_attention_block_theta(
block_idx=block_idx,
head_count=head_count,
head_count_kv=head_count_kv,
head_dim=head_dim,
@@ -74,22 +76,26 @@ def make_attention_block_ffn_theta_v2(
ffn_theta = Theta(
{
"ffn_norm.weight": DefaultPrimitiveTensor(
data=make_rand_torch((head_count * head_dim), dtype=dtype)
name=f"blk.{block_idx}.ffn_norm.weight",
data=make_rand_torch((head_count * head_dim), dtype=dtype),
),
"ffn_gate.weight": DefaultPrimitiveTensor(
name=f"blk.{block_idx}.ffn_gate.weight",
data=make_rand_torch(
(feed_forward_length, embedding_length), dtype=dtype
)
),
),
"ffn_up.weight": DefaultPrimitiveTensor(
name=f"blk.{block_idx}.ffn_up.weight",
data=make_rand_torch(
(feed_forward_length, embedding_length), dtype=dtype
)
),
),
"ffn_down.weight": DefaultPrimitiveTensor(
name=f"blk.{block_idx}.ffn_down.weight",
data=make_rand_torch(
(embedding_length, feed_forward_length), dtype=dtype
)
),
),
}
)
@@ -102,22 +108,26 @@ def make_moe_block_theta(feature_dim=1024, ffn_dim=6144, num_experts=8) -> Theta
return Theta(
{
"blk.0.ffn_gate_inp.weight": DefaultPrimitiveTensor(
data=make_rand_torch((num_experts, ffn_dim))
name="blk.0.ffn_gate_inp.weight",
data=make_rand_torch((num_experts, ffn_dim)),
),
"blk.0.ffn_norm.weight": DefaultPrimitiveTensor(
data=make_rand_torch((ffn_dim))
name="blk.0.ffn_norm.weight", data=make_rand_torch((ffn_dim))
),
"blk.0.layer_output_norm.weight": DefaultPrimitiveTensor(
data=make_rand_torch((ffn_dim))
name="blk.0.layer_output_norm.weight", data=make_rand_torch((ffn_dim))
),
"blk.0.ffn_gate_exps.weight": DefaultPrimitiveTensor(
data=make_rand_torch((num_experts, feature_dim * num_experts, ffn_dim))
name="blk.0.layer_output_norm.weight",
data=make_rand_torch((num_experts, feature_dim * num_experts, ffn_dim)),
),
"blk.0.ffn_up_exps.weight": DefaultPrimitiveTensor(
data=make_rand_torch((num_experts, feature_dim * num_experts, ffn_dim))
name="blk.0.ffn_up_exps.weight",
data=make_rand_torch((num_experts, feature_dim * num_experts, ffn_dim)),
),
"blk.0.ffn_down_exps.weight": DefaultPrimitiveTensor(
data=make_rand_torch((num_experts, ffn_dim, feature_dim * num_experts))
name="blk.0.ffn_down_exps.weight",
data=make_rand_torch((num_experts, ffn_dim, feature_dim * num_experts)),
),
}
)
@@ -128,11 +138,13 @@ def make_random_llama_theta(
) -> Theta:
res = {
"token_embd.weight": DefaultPrimitiveTensor(
data=make_rand_torch((vocab_size, config.hp.embedding_length), dtype=dtype)
name="token_embd.weight",
data=make_rand_torch((vocab_size, config.hp.embedding_length), dtype=dtype),
)
}
for i in range(config.hp.block_count):
res[f"blk.{i}"] = make_attention_block_ffn_theta_v2(
block_idx=i,
head_count=config.hp.attention_head_count,
head_count_kv=config.hp.attention_head_count_kv,
head_dim=config.hp.attn_head_dim,
@@ -142,10 +154,12 @@ def make_random_llama_theta(
).tree

res[f"output.weight"] = DefaultPrimitiveTensor(
data=make_rand_torch((vocab_size, config.hp.embedding_length), dtype=dtype)
name="output.weight",
data=make_rand_torch((vocab_size, config.hp.embedding_length), dtype=dtype),
)
res[f"output_norm.weight"] = DefaultPrimitiveTensor(
data=make_rand_torch((1, config.hp.embedding_length), dtype=dtype)
name="output_norm.weight",
data=make_rand_torch((1, config.hp.embedding_length), dtype=dtype),
)

return Theta(res)
67 changes: 67 additions & 0 deletions sharktank/sharktank/models/llama/toy_llama.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,67 @@
# Copyright 2024 Advanced Micro Devices, Inc.
#
# Licensed under the Apache License v2.0 with LLVM Exceptions.
# See https://llvm.org/LICENSE.txt for license information.
# SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception

from .testing import make_random_llama_theta

from sharktank.layers.configs import LlamaHParams
from sharktank.models.llama.llama import LlamaModelConfig
from sharktank.types import Dataset

import argparse
import torch

parser = argparse.ArgumentParser()
parser.add_argument("-s", "--seed", default=12345)
parser.add_argument("-o", "--output", default="/tmp/toy_llama.irpa")


def main():
args = parser.parse_args()
torch.manual_seed(args.seed)

dtype = torch.float16
block_seq_stride = 16
max_blocks = 8
attention_head_count = 8
attn_head_dim = 32
attention_head_count_kv = 4
rope_dimension_count = 32
vocabulary_size = 256

config = LlamaModelConfig(
hp=LlamaHParams(
context_length=block_seq_stride * max_blocks,
embedding_length=attention_head_count * attn_head_dim,
block_count=3,
feed_forward_length=23,
rope_dimension_count=rope_dimension_count,
rope_freq_base=500000.0,
attention_head_count=attention_head_count,
attn_head_dim=attn_head_dim,
attention_layer_norm_rms_epsilon=0.01,
attention_head_count_kv=attention_head_count_kv,
expert_count=0,
expert_used_count=0,
model_arch="llama",
),
block_seq_stride=block_seq_stride,
activation_dtype=dtype,
attention_dtype=dtype,
)

theta = make_random_llama_theta(
config=config,
vocab_size=vocabulary_size,
)

config_dict = config.hp.to_gguf_props()

dataset = Dataset(config_dict, theta)
dataset.save(args.output)


if __name__ == "__main__":
main()
3 changes: 3 additions & 0 deletions sharktank/sharktank/utils/cli.py
Original file line number Diff line number Diff line change
@@ -138,6 +138,9 @@ def get_tokenizer(args) -> tokenizer.InferenceTokenizer:
If the data_files= dict is present and explicit tokenizer options are not
set, we will try to infer a tokenizer from the data files.
"""
if args.tokenizer_type == "fake":
return tokenizer.fake_tokenizer()

if args.tokenizer_config_json is not None:
data_files = {"tokenizer_config.json": args.tokenizer_config_json}
else:
18 changes: 18 additions & 0 deletions sharktank/sharktank/utils/tokenizer.py
Original file line number Diff line number Diff line change
@@ -83,6 +83,24 @@ def _decode(self, tokens: list[list[int]]) -> list[str]:
...


class FakeTokenizer(InferenceTokenizer):
def _encode(self, texts: list[str], add_start_token: bool) -> list[list[int]]:
encoded = []
for text in texts:
encoded.append([int(t) for t in text.split(" ")])
return encoded

def _decode(self, tokens: list[list[int]]) -> list[str]:
strings = []
for token in tokens:
strings.append(" ".join([str(t) for t in token]))
return strings


def fake_tokenizer():
return FakeTokenizer()


def load_tokenizer(*posargs, tokenizer_type: str = "transformers", **kwargs):
if tokenizer_type == "transformers":
return _create_transformers_tokenizer(*posargs, **kwargs)
2 changes: 2 additions & 0 deletions sharktank/tests/layers/paged_llama_attention_block_test.py
Original file line number Diff line number Diff line change
@@ -59,6 +59,7 @@ def testExportDecomposed(self):
cache_state[0] = torch.rand(cache_state[0].shape, dtype=dtype)

theta = make_llama_attention_block_theta(
block_idx=0,
head_count=self.attention_head_count,
head_count_kv=self.head_count_kv,
head_dim=self.attention_head_dim,
@@ -133,6 +134,7 @@ def testExportNondecomposed(self):
cache_state[0] = torch.rand(cache_state[0].shape, dtype=dtype)

theta = make_llama_attention_block_theta(
block_idx=0,
head_count=self.attention_head_count,
head_count_kv=self.head_count_kv,
head_dim=self.attention_head_dim,
Original file line number Diff line number Diff line change
@@ -102,6 +102,7 @@ def make_unsharded_and_sharded_equal_cache_states() -> tuple[
)

theta = make_llama_attention_block_theta(
block_idx=0,
head_count=self.attention_head_count,
head_count_kv=self.head_count_kv,
head_dim=self.attention_head_dim,