This repository has been archived by the owner on Jul 29, 2020. It is now read-only.
forked from James-Thorson/2018_FSH556
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Showing
3 changed files
with
158 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,73 @@ | ||
library(TMB) | ||
|
||
setwd("/Users/jiecao/Desktop/hw3_soln") | ||
CPUE = FishData::download_catch_rates( survey="Eastern_Bering_Sea", species_set="Gadus chalcogrammus", error_tol=0.01, localdir=paste0(getwd(),"/") ) | ||
B_t = tapply( CPUE[,'Wt'], INDEX=CPUE[,'Year'], FUN=mean ) | ||
log_yt <- log(B_t) | ||
|
||
#Run TMB model | ||
compile("gompertz.cpp") | ||
dyn.load(dynlib("gompertz")) | ||
|
||
N = length(log_yt) | ||
data <- list(log_yt = log_yt,model_switch=1) | ||
parameters <- list(pop_par=c(1,0.5), log_sigma = -1,log_x0 = 4, log_xt = rep(mean(log_yt), N)) | ||
|
||
#data <- list(log_yt = log_yt,model_switch=2) | ||
#parameters <- list(pop_par=c(0.6,100), log_sigma = -1,log_x0 = 4, log_xt = rep(mean(log_yt), N)) | ||
|
||
obj <- MakeADFun(data, parameters, random = "log_xt", DLL = "gompertz") | ||
obj$hessian <- FALSE | ||
opt <- do.call("optim", obj) | ||
sd <- sdreport(obj) | ||
|
||
# extract fixed effects: | ||
fixed <- summary(sd, "fixed") | ||
# extract estimated process: | ||
log_xt <- summary(sd, "random")[, "Estimate"] | ||
log_xt_se <- summary(sd, "random")[, "Std. Error"] | ||
|
||
# simulation | ||
n_sim = 100 | ||
sim <- replicate(n_sim, { | ||
simdata <- obj$simulate() | ||
obj2 <- MakeADFun(list(log_yt=c(simdata$log_yt[1:31],rep(NA,5)),model_switch=1), parameters, random = "log_xt", DLL = "gompertz", silent = TRUE) | ||
TMBhelper::Optimize( obj=obj2, newtonsteps=1) | ||
c( true = simdata$log_xt[32:36], | ||
est = summary(sdreport(obj2), "random")[, "Estimate"][32:36], | ||
sd = summary(sdreport(obj2), "random")[, "Std. Error"][32:36]) | ||
}) | ||
|
||
# calculate coverage | ||
cal_coverage <- function (true, est, sd, interval){ | ||
low = est - qnorm(interval/2) * sd | ||
high = est + qnorm(interval/2) * sd | ||
return(true > low & true < high) | ||
} | ||
|
||
gom.matrix = matrix(NA,nrow=n_sim,ncol=5) | ||
for(i in 1:n_sim){ | ||
for(t in 1:5){ | ||
gom.matrix[i,t]=cal_coverage(sim[t,i],sim[t+5,i],sim[t+10,i],0.5) | ||
} | ||
} | ||
apply(gom.matrix,2,sum) | ||
|
||
# ricker | ||
parameters2 <- list(pop_par=c(0.6,100), log_sigma = -1,log_x0 = 4, log_xt = rep(mean(log_yt), N)) | ||
sim2 <- replicate(n_sim, { | ||
simdata <- obj$simulate() | ||
obj3 <- MakeADFun(list(log_yt=c(simdata$log_yt[1:31],rep(NA,5)),model_switch=2), parameters2, random = "log_xt", DLL = "gompertz", silent = TRUE) | ||
TMBhelper::Optimize( obj=obj3, newtonsteps=1) | ||
c( true = simdata$log_xt[32:36], | ||
est = summary(sdreport(obj3), "random")[, "Estimate"][32:36], | ||
sd = summary(sdreport(obj3), "random")[, "Std. Error"][32:36]) | ||
}) | ||
|
||
ricker.matrix = matrix(NA,nrow=n_sim,ncol=5) | ||
for(i in 1:n_sim){ | ||
for(t in 1:5){ | ||
ricker.matrix[i,t]=cal_coverage(sim2[t,i],sim2[t+5,i],sim2[t+10,i],0.5) | ||
} | ||
} | ||
apply(ricker.matrix,2,sum) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,85 @@ | ||
|
||
// State-space Gompertz model | ||
#include <TMB.hpp> | ||
|
||
// Function for detecting NAs | ||
template<class Type> | ||
bool isNA(Type x){ | ||
return R_IsNA(asDouble(x)); | ||
} | ||
|
||
template<class Type> | ||
Type objective_function<Type>::operator() () | ||
{ | ||
// data: | ||
DATA_VECTOR(log_yt); | ||
DATA_INTEGER(model_switch); | ||
|
||
// parameters: | ||
PARAMETER_VECTOR(pop_par); // population growth rate parameter //density dependence parameter | ||
PARAMETER(log_sigma); // log(process SD) = log(obs SD) | ||
PARAMETER(log_x0); | ||
PARAMETER_VECTOR(log_xt); // state | ||
|
||
// transform the parameters | ||
Type sigma = exp(log_sigma); | ||
|
||
// reports | ||
ADREPORT(sigma) | ||
|
||
int n = log_yt.size(); // get time series length | ||
Type nll = 0.0; // initialize negative log likelihood | ||
|
||
nll -= dnorm(log_xt[0], log_x0, sigma, true) ; | ||
|
||
Type m; | ||
|
||
// process model: | ||
for(int i = 1; i < n; i++){ | ||
if(model_switch == 1){ | ||
m = pop_par[0]+pop_par[1]*log_xt[i-1] ; //Gompertz model | ||
} | ||
if(model_switch == 2){ | ||
m = log_xt[i-1] + pop_par[0]*(1-exp(log_xt[i-1])/pop_par[1]) ; //Ricker model | ||
} | ||
nll -= dnorm(log_xt[i], m, sigma, true); //likelihood for random effects | ||
} | ||
|
||
// observation model: | ||
for(int i = 0; i < n; i++){ | ||
if(!isNA(log_yt[i])){ | ||
nll -= dnorm(log_yt[i], log_xt[i], sigma, true); //likelihood for observations | ||
} | ||
} | ||
|
||
SIMULATE{ | ||
log_xt[0] = rnorm(log_x0,sigma); | ||
log_yt[0] = rnorm(log_xt[0],sigma); | ||
for (int i = 1; i < n; i++){ | ||
log_xt[i] = rnorm(pop_par[0]+pop_par[1]*log_xt[i-1], sigma); | ||
log_yt[i] = rnorm(log_xt[i], sigma); | ||
} | ||
REPORT(log_xt); | ||
REPORT(log_yt); | ||
} | ||
|
||
return nll; | ||
} | ||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
Binary file modified
BIN
+68.6 KB
(100%)
Week 7 -- spatiotemporal models/Lecture/Lecture 7 -- spatio-temporal models.pptx
Binary file not shown.