This repository has been archived by the owner on Jul 29, 2020. It is now read-only.
forked from James-Thorson/2018_FSH556
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
e21d84c
commit 808a1b0
Showing
28 changed files
with
601 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,3 @@ | ||
*.o | ||
*.dll | ||
*.so |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,36 @@ | ||
# Simulate predictors# | ||
Factor = rep( 1:10, each=10)# | ||
Z = rnorm( length(unique(Factor)), mean=0, sd=1)# | ||
X0 = 0# | ||
# | ||
# Simulate response# | ||
Y = Z[Factor] + X0 + rnorm( length(Factor), mean=0, sd=1) | ||
library(TMB)# | ||
# | ||
# Compile model# | ||
Version = "linear_mixed_model"# | ||
compile( paste0(Version,".cpp") )# | ||
# | ||
# Build inputs# | ||
Data = list( "n_data"=length(Y), "n_factors"=length(unique(Factor)), "Factor"=Factor-1, "Y"=Y)# | ||
Parameters = list( "X0"=-10, "log_SD0"=2, "log_SDZ"=2, "Z"=rep(0,Data$n_factor) ) | ||
Data | ||
Parameters | ||
# Turn off random effects# | ||
Map = list()# | ||
Map[["log_SDZ"]] = factor(NA)# | ||
Map[["Z"]] = factor( rep(NA,Data$n_factor) ) | ||
Map | ||
# Build object# | ||
dyn.load( dynlib("linear_mixed_model") )# | ||
Obj = MakeADFun(data=Data, parameters=Parameters, map=Map) | ||
Obj | ||
Obj$par | ||
# Turn off random effects# | ||
Map = list()# | ||
Map[["log_SDZ"]] = factor(NA) | ||
Map | ||
# Build object# | ||
dyn.load( dynlib("linear_mixed_model") )# | ||
Obj = MakeADFun(data=Data, parameters=Parameters, map=Map) | ||
Obj$par |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,50 @@ | ||
|
||
setwd( "C:/Users/James.Thorson/Desktop/Project_git/2016_Spatio-temporal_models/TMB examples/map argument" ) | ||
|
||
###################### | ||
# Simulate data | ||
###################### | ||
|
||
# Simulate predictors | ||
Factor = rep( 1:10, each=10) | ||
Z = rnorm( length(unique(Factor)), mean=0, sd=1) | ||
X0 = 0 | ||
|
||
# Simulate response | ||
Y = Z[Factor] + X0 + rnorm( length(Factor), mean=0, sd=1) | ||
|
||
###################### | ||
# Run in TMB | ||
###################### | ||
|
||
library(TMB) | ||
|
||
# Compile model | ||
Version = "linear_mixed_model" | ||
compile( paste0(Version,".cpp") ) | ||
|
||
# Build inputs | ||
Data = list( "n_data"=length(Y), "n_factors"=length(unique(Factor)), "Factor"=Factor-1, "Y"=Y) | ||
Parameters = list( "X0"=-10, "log_SD0"=2, "log_SDZ"=2, "Z"=rep(0,Data$n_factor) ) | ||
|
||
# Turn off random effects | ||
Map = list() | ||
Map[["log_SDZ"]] = factor(NA) | ||
Map[["Z"]] = factor( rep(NA,Data$n_factor) ) | ||
|
||
# Build object | ||
dyn.load( dynlib("linear_mixed_model") ) | ||
Obj = MakeADFun(data=Data, parameters=Parameters, map=Map) # | ||
|
||
# Prove that function and gradient calls work | ||
Obj$fn( Obj$par ) | ||
Obj$gr( Obj$par ) | ||
|
||
# Optimize | ||
start_time = Sys.time() | ||
Opt = nlminb( start=Obj$par, objective=Obj$fn, gradient=Obj$gr, control=list("trace"=1) ) | ||
|
||
# Get reporting and SEs | ||
Report = Obj$report() | ||
SD = sdreport( Obj ) | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,45 @@ | ||
#include <TMB.hpp> | ||
template<class Type> | ||
Type objective_function<Type>::operator() () | ||
{ | ||
// Data | ||
DATA_INTEGER( n_data ); | ||
DATA_INTEGER( n_factors ); | ||
DATA_IVECTOR( Factor ); | ||
DATA_VECTOR( Y ); | ||
|
||
// Parameters | ||
PARAMETER( X0 ); | ||
PARAMETER( log_SD0 ); | ||
PARAMETER( log_SDZ ); | ||
PARAMETER_VECTOR( Z ); | ||
|
||
// Objective funcction | ||
Type jnll = 0; | ||
|
||
// Probability of data conditional on fixed and random effect values | ||
for( int i=0; i<n_data; i++){ | ||
jnll -= dnorm( Y(i), X0 + Z(Factor(i)), exp(log_SD0), true ); | ||
} | ||
|
||
// Probability of random coefficients | ||
for( int i=0; i<n_factors; i++){ | ||
jnll -= dnorm( Z(i), Type(0.0), exp(log_SDZ), true ); | ||
} | ||
|
||
// Reporting | ||
Type SDZ = exp(log_SDZ); | ||
Type SD0 = exp(log_SD0); | ||
|
||
REPORT( SDZ ); | ||
REPORT( SD0 ); | ||
REPORT( Z ); | ||
REPORT( X0 ); | ||
|
||
ADREPORT( SDZ ); | ||
ADREPORT( SD0 ); | ||
ADREPORT( Z ); | ||
ADREPORT( X0 ); | ||
|
||
return jnll; | ||
} |
Binary file not shown.
Binary file added
BIN
+15.5 KB
Week 1 -- Likelihoods and linear models/Homework/Homework_Week_1.docx
Binary file not shown.
Binary file added
BIN
+162 Bytes
Week 1 -- Likelihoods and linear models/Homework/~$mework_Week_1.docx
Binary file not shown.
Binary file not shown.
Binary file added
BIN
+8.92 KB
Week 1 -- Likelihoods and linear models/Lab 1/Canary_histogram--with_fit.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file added
BIN
+752 KB
Week 1 -- Likelihoods and linear models/Lab 1/Lab 1 -- Generalized linear models.pdf
Binary file not shown.
Binary file added
BIN
+1.08 MB
Week 1 -- Likelihoods and linear models/Lab 1/Lab 1 -- Generalized linear models.pptx
Binary file not shown.
156 changes: 156 additions & 0 deletions
156
Week 1 -- Likelihoods and linear models/Lab 1/Lab_1_code_V1.R
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,156 @@ | ||
|
||
setwd( "C:/Users/James.Thorson/Desktop/Project_git/2018_FSH556/Week 1 -- Likelihoods and linear models/Lab 1" ) | ||
library(TMB) | ||
|
||
########### | ||
# Nonlinear optimization | ||
########### | ||
|
||
library("animation") # Requires v2.12 or higher, also need to download: http://www.imagemagick.org/script/binary-releases.php | ||
|
||
# Nonlinear function | ||
RosenbrookFn = function(Params, Write=TRUE){ | ||
Dev = (1-Params[1])^2 + 100*(Params[2]-Params[1]^2)^2 | ||
if(Write==TRUE){ | ||
if("Trace.txt" %in% list.files()){ | ||
write.table(matrix(c(Dev,Params),nrow=1), file="Trace.txt", append=TRUE,col.names=FALSE,row.names=FALSE) | ||
}else{ | ||
write.table(matrix(c(Dev,Params),nrow=1), file="Trace.txt", append=FALSE,col.names=FALSE,row.names=FALSE) | ||
} | ||
} | ||
return(Dev) | ||
} | ||
|
||
# Generate contour | ||
X = seq(-10,20,length.out=1e3) | ||
Y = seq(-10,20,length.out=1e3) | ||
Z = matrix(NA, ncol=length(X), nrow=length(Y)) | ||
for(xI in 1:length(X)){ | ||
for(yI in 1:length(Y)){ | ||
Z[xI,yI] = RosenbrookFn(c(X[xI],Y[yI]), Write=FALSE) | ||
}} | ||
|
||
# Rosenbrook function | ||
png( file="Rosenbrook.png", width=6, height=6, res=200, units="in") | ||
par( mar=c(3,3,2,0) ) | ||
contour(x=X, y=Y, z=Z, levels=seq(0,1000,by=2)^5+1) | ||
points( x=1, y=1, cex=2, col="red", lwd=2) | ||
dev.off() | ||
|
||
# Plot path -- Nelder Mead | ||
if("Trace.txt" %in% list.files()) file.remove("Trace.txt") | ||
Opt = nlminb( start=c(4,4), objective=RosenbrookFn, Write=TRUE ) | ||
Trace = read.table("Trace.txt" ) | ||
contour(x=X, y=Y, z=Z, levels=seq(0,1000,by=10)^3+1) | ||
lines(x=Trace[,2], y=Trace[,3],col="red") | ||
ani.options(interval=0.10, nmax=1e4) | ||
saveVideo(expr={for(i in 1:nrow(Trace)){contour(x=X, y=Y, z=Z, levels=seq(0,1000,by=10)^3+1); lines(x=Trace[max(1,i-10):i,2], y=Trace[max(1,i-10):i,3],col="red",lwd=3); points(x=c(1,Trace[i,2]),y=c(1,Trace[i,3]), col=c("black","red"),cex=2,lwd=3)}}, video.name="Nelder-Mead.mp4", convert = 'gm convert', clean=TRUE) # | ||
|
||
# Plot path -- BFGS | ||
if("Trace.txt" %in% list.files()) file.remove("Trace.txt") | ||
Opt = optim( par=c(4,4), fn=RosenbrookFn, Write=TRUE ) | ||
Trace = read.table("Trace.txt" ) | ||
contour(x=X, y=Y, z=Z, levels=seq(0,1000,by=10)^3+1) | ||
lines(x=Trace[,2], y=Trace[,3],col="red") | ||
ani.options(interval=0.10, nmax=1e4) | ||
saveVideo(expr={for(i in 1:nrow(Trace)){contour(x=X, y=Y, z=Z, levels=seq(0,1000,by=10)^3+1); lines(x=Trace[max(1,i-10):i,2], y=Trace[max(1,i-10):i,3],col="red",lwd=3); points(x=c(1,Trace[i,2]),y=c(1,Trace[i,3]), col=c("black","red"),cex=2,lwd=3)}}, video.name="BFGS.mp4", convert = 'gm convert', clean=TRUE) # | ||
|
||
# Plot path -- TMB | ||
# Step 1 -- make and compile template file | ||
compile( "Rosenbrook.cpp" ) | ||
|
||
# Step 2 -- build inputs and object | ||
dyn.load( dynlib("Rosenbrook") ) | ||
Params = list( "Params"=c(4,4) ) | ||
Data = list( "dummy"=0 ) | ||
Obj = MakeADFun( data=Data, parameters=Params, DLL="Rosenbrook") | ||
|
||
# Redefine functions | ||
Obj$fn_trace <- function( Params, ...){ | ||
Dev = Obj$fn( Params, ... ) | ||
if("Trace.txt" %in% list.files()){ | ||
write.table(matrix(c(Dev,Params),nrow=1), file="Trace.txt", append=TRUE,col.names=FALSE,row.names=FALSE) | ||
}else{ | ||
write.table(matrix(c(Dev,Params),nrow=1), file="Trace.txt", append=FALSE,col.names=FALSE,row.names=FALSE) | ||
} | ||
return( Dev ) | ||
} | ||
|
||
# Step 3 -- test and optimize | ||
if("Trace.txt" %in% list.files()) file.remove("Trace.txt") | ||
Opt = nlminb( start=Obj$par, objective=Obj$fn_trace, gradient=Obj$gr ) | ||
Trace = read.table("Trace.txt" ) | ||
contour(x=X, y=Y, z=Z, levels=seq(0,1000,by=10)^3+1) | ||
lines(x=Trace[,2], y=Trace[,3],col="red") | ||
ani.options(interval=0.10, nmax=1e4) | ||
saveVideo(expr={for(i in 1:nrow(Trace)){contour(x=X, y=Y, z=Z, levels=seq(0,1000,by=10)^3+1); lines(x=Trace[max(1,i-10):i,2], y=Trace[max(1,i-10):i,3],col="red",lwd=3); points(x=c(1,Trace[i,2]),y=c(1,Trace[i,3]), col=c("black","red"),cex=2,lwd=3)}}, video.name="TMB.mp4", convert = 'gm convert', clean=TRUE) # | ||
|
||
########### | ||
# Delta-model for canary rockfish | ||
########### | ||
|
||
devtools::install_github("nwfsc-assess/geostatistical_delta-GLMM") | ||
library( SpatialDeltaGLMM ) | ||
|
||
# | ||
data(WCGBTS_Canary_example) | ||
CPUE = WCGBTS_Canary_example$HAUL_WT_KG | ||
X = cbind( "Intercept"=rep(1,length(CPUE)) ) | ||
|
||
# Step 1 -- make and compile template file | ||
compile( "delta_model_v1.cpp" ) | ||
|
||
# Step 2 -- build inputs and object | ||
dyn.load( dynlib("delta_model_v1") ) | ||
Params = list("b_j"=rep(0,ncol(X)), "theta_z"=c(0,0)) | ||
Data = list( "y_i"=CPUE, "X_ij"=X ) | ||
Obj = MakeADFun( data=Data, parameters=Params, DLL="delta_model_v1") | ||
|
||
# Step 3 -- test and optimize | ||
Obj$fn( Obj$par ) | ||
Obj$gr( Obj$par ) | ||
Opt = nlminb( start=Obj$par, objective=Obj$fn, gradient=Obj$gr ) | ||
Opt$diagnostics = data.frame( "name"=names(Obj$par), "Est"=Opt$par, "final_gradient"=as.vector(Obj$gr(Opt$par))) | ||
Opt$par # estimated parameters | ||
SD = sdreport( Obj ) # standard errors | ||
|
||
# Extract stuff | ||
Report = Obj$report() | ||
|
||
# Visualize fit | ||
png( file="Canary_histogram--with_fit.png", width=4, height=4, res=200, units="in") | ||
par( mar=c(3,3,2,0), mgp=c(2,0.5,0), tck=-0.02) | ||
hist( log(1+CPUE), freq=FALSE, col=rgb(1,0,0,0.2) ) | ||
Sim_CPUE = (1-rbinom(1e5, size=1, prob=Report$zero_prob)) * rlnorm(1e5, meanlog=Report$linpred_i, sdlog=Report$logsd) | ||
hist( log(1+Sim_CPUE), freq=FALSE, add=TRUE, col=rgb(0,0,1,0.2) ) | ||
legend( "topright", bty="n", legend=c("Observed","Predicted"), fill=c("red","blue")) | ||
dev.off() | ||
|
||
########### | ||
# Crossvalidation experiment using delta-model for canary rockfish | ||
########### | ||
|
||
# Step 0 -- make and compile template file | ||
compile( "delta_model_v2.cpp" ) | ||
dyn.load( dynlib("delta_model_v2") ) | ||
|
||
# Step 1 -- divide into partitions | ||
K = 10 | ||
Partition_i = sample( x=1:K, size=length(CPUE), replace=TRUE ) | ||
PredNLL_k = rep(NA, K) | ||
|
||
# Step 2 --Loop through partitions | ||
for(k in 1:K){ | ||
Params = list("b_j"=rep(0,ncol(X)), "theta_z"=c(0,0)) | ||
Data = list( "y_i"=CPUE, "X_ij"=X, predTF_i=ifelse(Partition_i==k,1,0) ) | ||
Obj = MakeADFun( data=Data, parameters=Params, DLL="delta_model_v2") | ||
Opt = nlminb( start=Obj$par, objective=Obj$fn, gradient=Obj$gr ) | ||
Report = Obj$report() | ||
PredNLL_k[k] = Report$pred_jnll | ||
} | ||
|
||
# log-Predictive probability per datum | ||
mean( PredNLL_k / table(Partition_i) ) | ||
|
||
|
||
|
Binary file not shown.
17 changes: 17 additions & 0 deletions
17
Week 1 -- Likelihoods and linear models/Lab 1/Rosenbrook.cpp
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,17 @@ | ||
// Space time | ||
#include <TMB.hpp> | ||
template<class Type> | ||
Type objective_function<Type>::operator() () | ||
{ | ||
// Data | ||
DATA_SCALAR( dummy ); | ||
|
||
// Parameters | ||
PARAMETER_VECTOR( Params ); | ||
|
||
// Objective funcction | ||
Type jnll = pow(1-Params(0),2) + 100*pow(Params(1)-pow(Params(0),2),2); | ||
|
||
// Reporting | ||
return jnll; | ||
} |
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file not shown.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,42 @@ | ||
14409 4 4 | ||
2427.00072099677 3.00771735492052 4.12399658170315 | ||
405.567414727713 2.65858999238928 5.06107186402148 | ||
18.85016210181 2.54167027391276 6.05421323332969 | ||
2.84052160663671 2.66012128811671 7.04717313042224 | ||
2.48500715651973 2.57408553778493 6.6344380201405 | ||
2.23172687072318 2.49322944264862 6.22065702314602 | ||
3.18801765974419 2.16815385655468 4.56585654912003 | ||
2.00271594240845 2.41024401150956 5.79747459749452 | ||
1.87488605284059 2.3256970972798 5.37460137008961 | ||
1.77194653364814 2.28315403564269 5.17737169908532 | ||
1.35689715514021 2.14013048534639 4.55628389870529 | ||
1.09787003107786 2.03695670644768 4.13416238108617 | ||
1.00957541887104 1.85503830706771 3.38839545098624 | ||
0.568839706248912 1.74096609143522 3.04503736138855 | ||
0.434842044388779 1.64595911534794 2.69592287792184 | ||
0.407023062869276 1.56884793522114 2.43239871108632 | ||
0.330273705858859 1.5552667427509 2.40403824807302 | ||
0.281940582356929 1.52955414047999 2.33564614545925 | ||
0.236492322508975 1.48383012387979 2.19685210823917 | ||
0.191985011699856 1.39169261567786 1.91717115075547 | ||
0.145941492546445 1.37338807097366 1.87811838277943 | ||
0.119799804021527 1.34216179988057 1.79617804158212 | ||
0.105536983836215 1.25267970672711 1.54878833077767 | ||
0.0647292580087596 1.25422104341677 1.5720658407961 | ||
0.0601678332615207 1.24528231446488 1.55051781730963 | ||
0.0484329717987803 1.2194670526587 1.48546531429903 | ||
0.0683766725485752 1.07912909721802 1.13959667554488 | ||
0.0311203129994762 1.16671083829298 1.35544546335281 | ||
0.0204533108352537 1.11149011793839 1.22645301459011 | ||
0.00854578852597585 1.0884630049999 1.18206827278944 | ||
0.00524697907085572 1.06741031796208 1.13671369635572 | ||
0.00323015633269444 1.04285120562733 1.08380509919993 | ||
0.000662638916923775 1.02572915358576 1.05203970044365 | ||
0.000156811462375771 1.01008182154083 1.01952253229918 | ||
1.18957012499119e-05 1.00216171569509 1.00405935384206 | ||
2.97447697019197e-07 1.00053469810139 1.0010804271676 | ||
9.18162300049358e-09 0.999928188914863 0.999850038862464 | ||
3.69301837436315e-13 1.00000039517812 1.00000083652307 | ||
3.99639202020881e-19 1.00000000039871 1.00000000084648 | ||
2.36046904364757e-27 0.999999999999961 0.999999999999925 | ||
2.36046904364757e-27 0.999999999999961 0.999999999999925 |
Oops, something went wrong.