This repository has been archived by the owner on Jul 29, 2020. It is now read-only.
forked from James-Thorson/2018_FSH556
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
0d9b8a8
commit 277575c
Showing
24 changed files
with
313 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,95 @@ | ||
|
||
setwd( "C:/Users/James.Thorson/Desktop/Project_git/2018_FSH556/Week 3 -- Temporal Models/Lab" ) | ||
Use_REML = FALSE | ||
set.seed(2) | ||
|
||
##################### | ||
# Explore Gompertz model | ||
##################### | ||
|
||
beta= 0.2 | ||
alpha = 1 | ||
d_equil = exp(alpha/beta) | ||
|
||
d_1 = seq(0,d_equil*2,length=1e4) | ||
d_2 = d_1 * exp(alpha) * exp( - beta*log(d_1)) | ||
|
||
# Dynamics | ||
png( file="Gompertz_dynamics.png", width=8, height=4, res=200, units="in") | ||
par( mfrow=c(1,2), mar=c(3,3.5,2,0), mgp=c(1.75,0.25,0), tck=-0.02) | ||
plot( x=d_1, y=d_2, type="l", lwd=3, xlab=expression(Biomass[t]), ylab=expression(Biomass[t+1]), main="Production") | ||
abline( a=0, b=1, lty="dotted") | ||
# Log-dynamics | ||
plot( x=log(d_1[-1]), y=log(d_2[-1]/d_1[-1]), type="l", lwd=3, xlab=expression(log(Biomass[t])), ylab=expression(log(Biomass[t+1]/Biomass[t])), main="log-Biomass ratio" ) | ||
abline( a=1, b=0, lty="dotted") | ||
dev.off() | ||
|
||
###################### | ||
# Simulate data | ||
###################### | ||
|
||
nt = 100 | ||
log_d0 = 3 | ||
sigmaP = 0.5 | ||
sigmaM = 0.5 | ||
alpha = 1 | ||
beta = 0.1 | ||
|
||
# Simulate predictors | ||
log_d_t = log_b_t = rep(NA, nt) | ||
log_d_t[1] = log_d0 | ||
for( t in 2:nt ){ | ||
log_d_t[t] = alpha + (1-beta)*log_d_t[t-1] + rnorm( 1, mean=0, sd=sigmaP ) | ||
} | ||
for( t in 1:nt ){ | ||
log_b_t[t] = log_d_t[t] + rnorm( 1, mean=0, sd=sigmaM ) | ||
} | ||
|
||
|
||
|
||
###################### | ||
# Run in TMB | ||
###################### | ||
|
||
library(TMB) | ||
|
||
# Compile model | ||
Version = "gompertz" | ||
compile( paste0(Version,".cpp") ) | ||
|
||
# Build inputs | ||
Data = list( "nt"=nt, "log_b_t"=log_b_t ) | ||
Parameters = list( "log_d0"=0, "log_sigmaP"=1, "log_sigmaM"=1, "alpha"=0, "rho"=0, "log_d_t"=rep(0,nt) ) | ||
Random = c("log_d_t") | ||
if( Use_REML==TRUE ) Random = union( Random, c("log_d0","alpha","rho") ) | ||
|
||
# Build object | ||
dyn.load( dynlib("gompertz") ) | ||
Obj = MakeADFun(data=Data, parameters=Parameters, random=Random) # | ||
|
||
# Prove that function and gradient calls work | ||
Obj$fn( Obj$par ) | ||
Obj$gr( Obj$par ) | ||
|
||
# Optimize | ||
start_time = Sys.time() | ||
Opt = nlminb( start=Obj$par, objective=Obj$fn, gradient=Obj$gr, control=list("trace"=1) ) | ||
Opt[["final_gradient"]] = Obj$gr( Opt$par ) | ||
Opt[["total_time"]] = Sys.time() - start_time | ||
|
||
# Get reporting and SEs | ||
Report = Obj$report() | ||
SD = sdreport( Obj ) | ||
|
||
for( z in 1:3 ){ | ||
png( file=paste0("gompertz_",z,".png"), width=8, height=5, res=200, units="in" ) | ||
par( mar=c(3,3,1,1), mgp=c(2,0.5,0), tck=-0.02 ) | ||
plot( x=1:nt, y=log_b_t, col="blue", cex=1.2, xlab="Time", ylab="Value", pch=20 ) | ||
if(z>=2){ | ||
points( x=1:nt, y=as.list(SD,"Estimate")$log_d_t, col="red" ) | ||
for( t in 1:nt) lines( x=rep(t,2), y=as.list(SD,"Estimate")$log_d_t[t]+c(-1.96,1.96)*as.list(SD,"Std. Error")$log_d_t[t], col="red" ) | ||
} | ||
if(z>=3) lines( x=1:nt, y=log_d_t, col="black", lwd=2 ) | ||
dev.off() | ||
} | ||
|
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file not shown.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,43 @@ | ||
#include <TMB.hpp> | ||
template<class Type> | ||
Type objective_function<Type>::operator() () | ||
{ | ||
// Data | ||
DATA_INTEGER( nt ); | ||
DATA_VECTOR( log_b_t ); | ||
|
||
// Parameters | ||
PARAMETER( log_d0 ); | ||
PARAMETER( log_sigmaP ); | ||
PARAMETER( log_sigmaM ); | ||
PARAMETER( alpha ); | ||
PARAMETER( rho ); | ||
PARAMETER_VECTOR( log_d_t ); | ||
|
||
// Objective funcction | ||
Type jnll = 0; | ||
|
||
// Probability of random coefficients | ||
jnll -= dnorm( log_d_t(0), log_d0, exp(log_sigmaP), true ); | ||
for( int t=1; t<nt; t++){ | ||
jnll -= dnorm( log_d_t(t), alpha + rho*log_d_t(t-1), exp(log_sigmaP), true ); | ||
} | ||
|
||
// Probability of data conditional on fixed and random effect values | ||
for( int t=0; t<nt; t++){ | ||
jnll -= dnorm( log_b_t(t), log_d_t(t), exp(log_sigmaM), true ); | ||
} | ||
|
||
// Reporting | ||
Type sigmaP = exp(log_sigmaP); | ||
Type sigmaM = exp(log_sigmaM); | ||
|
||
REPORT( sigmaP ); | ||
REPORT( sigmaM ); | ||
REPORT( log_d_t ); | ||
|
||
ADREPORT( sigmaP ); | ||
ADREPORT( sigmaM ); | ||
|
||
return jnll; | ||
} |
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file not shown.
Binary file not shown.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,132 @@ | ||
|
||
setwd( "C:/Users/James.Thorson/Desktop/Project_git/2018_FSH556/Week 3 -- Temporal Models/Lecture" ) | ||
Use_REML = FALSE | ||
set.seed(2) | ||
|
||
###################### | ||
# Simulate data | ||
###################### | ||
|
||
nt = 100 | ||
x0 = 3 | ||
sigmaP = 0.2 | ||
sigmaM = 0.2 | ||
alpha = 0.04 | ||
|
||
# Simulate predictors | ||
x_t = y_t = rep(NA, nt) | ||
x_t[1] = x0 | ||
for( t in 2:nt ){ | ||
x_t[t] = x_t[t-1] + rnorm( 1, mean=alpha, sd=sigmaP ) | ||
} | ||
for( t in 1:nt ){ | ||
y_t[t] = x_t[t] + rnorm( 1, mean=0, sd=sigmaM ) | ||
} | ||
|
||
###################### | ||
# Linear model in R | ||
###################### | ||
|
||
Lm = lm( y_t ~ I(1:nt) ) | ||
ypred_t = predict(Lm, se=TRUE) | ||
|
||
for( z in 1:3 ){ | ||
png( file=paste0("lm_",z,".png"), width=8, height=5, res=200, units="in" ) | ||
par( mar=c(3,3,1,1), mgp=c(2,0.5,0), tck=-0.02 ) | ||
plot( x=1:nt, y=y_t, col="blue", cex=1.2, xlab="Time", ylab="Value", pch=20 ) | ||
if(z>=2){ | ||
points( x=1:nt, y=ypred_t$fit, col="red" ) | ||
for( t in 1:nt) lines( x=rep(t,2), y=ypred_t$fit[t]+c(-1.96,1.96)*ypred_t$se.fit[t], col="red" ) | ||
} | ||
if(z>=3) lines( x=1:nt, y=x_t, col="black", lwd=2 ) | ||
dev.off() | ||
} | ||
|
||
|
||
###################### | ||
# Loess smoother in R | ||
###################### | ||
|
||
Loess = loess( y_t ~ I(1:nt) ) | ||
ypred_t = predict(Loess, se=TRUE) | ||
|
||
for( z in 1:3 ){ | ||
png( file=paste0("loess_",z,".png"), width=8, height=5, res=200, units="in" ) | ||
par( mar=c(3,3,1,1), mgp=c(2,0.5,0), tck=-0.02 ) | ||
plot( x=1:nt, y=y_t, col="blue", cex=1.2, xlab="Time", ylab="Value", pch=20 ) | ||
if(z>=2){ | ||
points( x=1:nt, y=ypred_t$fit, col="red" ) | ||
for( t in 1:nt) lines( x=rep(t,2), y=ypred_t$fit[t]+c(-1.96,1.96)*ypred_t$se.fit[t], col="red" ) | ||
} | ||
if(z>=3) lines( x=1:nt, y=x_t, col="black", lwd=2 ) | ||
dev.off() | ||
} | ||
|
||
|
||
###################### | ||
# Smoother in R | ||
###################### | ||
|
||
library(mgcv) | ||
|
||
Gam = gam( y_t ~ s(I(1:nt)) ) | ||
ypred_t = predict(Gam, se=TRUE) | ||
|
||
for( z in 1:3 ){ | ||
png( file=paste0("gam_",z,".png"), width=8, height=5, res=200, units="in" ) | ||
par( mar=c(3,3,1,1), mgp=c(2,0.5,0), tck=-0.02 ) | ||
plot( x=1:nt, y=y_t, col="blue", cex=1.2, xlab="Time", ylab="Value", pch=20 ) | ||
if(z>=2){ | ||
points( x=1:nt, y=ypred_t$fit, col="red" ) | ||
for( t in 1:nt) lines( x=rep(t,2), y=ypred_t$fit[t]+c(-1.96,1.96)*ypred_t$se.fit[t], col="red" ) | ||
} | ||
if(z>=3) lines( x=1:nt, y=x_t, col="black", lwd=2 ) | ||
dev.off() | ||
} | ||
|
||
###################### | ||
# Run in TMB | ||
###################### | ||
|
||
library(TMB) | ||
|
||
# Compile model | ||
Version = "kalman_filter" | ||
compile( paste0(Version,".cpp") ) | ||
|
||
# Build inputs | ||
Data = list( "nt"=nt, "y_t"=y_t ) | ||
Parameters = list( "x0"=0, "log_sigmaP"=1, "log_sigmaM"=1, "alpha"=0, "x_t"=rep(0,nt) ) | ||
Random = c("x_t") | ||
if( Use_REML==TRUE ) Random = union( Random, c("x0","alpha") ) | ||
|
||
# Build object | ||
dyn.load( dynlib("kalman_filter") ) | ||
Obj = MakeADFun(data=Data, parameters=Parameters, random=Random) # | ||
|
||
# Prove that function and gradient calls work | ||
Obj$fn( Obj$par ) | ||
Obj$gr( Obj$par ) | ||
|
||
# Optimize | ||
start_time = Sys.time() | ||
Opt = nlminb( start=Obj$par, objective=Obj$fn, gradient=Obj$gr, control=list("trace"=1) ) | ||
Opt[["final_gradient"]] = Obj$gr( Opt$par ) | ||
Opt[["total_time"]] = Sys.time() - start_time | ||
|
||
# Get reporting and SEs | ||
Report = Obj$report() | ||
SD = sdreport( Obj ) | ||
|
||
for( z in 1:3 ){ | ||
png( file=paste0("kalman_",z,".png"), width=8, height=5, res=200, units="in" ) | ||
par( mar=c(3,3,1,1), mgp=c(2,0.5,0), tck=-0.02 ) | ||
plot( x=1:nt, y=y_t, col="blue", cex=1.2, xlab="Time", ylab="Value", pch=20 ) | ||
if(z>=2){ | ||
points( x=1:nt, y=as.list(SD,"Estimate")$x_t, col="red" ) | ||
for( t in 1:nt) lines( x=rep(t,2), y=as.list(SD,"Estimate")$x_t[t]+c(-1.96,1.96)*as.list(SD,"Std. Error")$x_t[t], col="red" ) | ||
} | ||
if(z>=3) lines( x=1:nt, y=x_t, col="black", lwd=2 ) | ||
dev.off() | ||
} | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,43 @@ | ||
#include <TMB.hpp> | ||
template<class Type> | ||
Type objective_function<Type>::operator() () | ||
{ | ||
// Data | ||
DATA_INTEGER( nt ); | ||
DATA_VECTOR( y_t ); | ||
|
||
// Parameters | ||
PARAMETER( x0 ); | ||
PARAMETER( log_sigmaP ); | ||
PARAMETER( log_sigmaM ); | ||
PARAMETER( alpha ); | ||
PARAMETER_VECTOR( x_t ); | ||
|
||
// Objective funcction | ||
Type jnll = 0; | ||
|
||
// Probability of random coefficients | ||
jnll -= dnorm( x_t(0), x0, exp(log_sigmaP), true ); | ||
for( int t=1; t<nt; t++){ | ||
jnll -= dnorm( x_t(t), x_t(t-1) + alpha, exp(log_sigmaP), true ); | ||
} | ||
|
||
// Probability of data conditional on fixed and random effect values | ||
for( int t=0; t<nt; t++){ | ||
jnll -= dnorm( y_t(t), x_t(t), exp(log_sigmaM), true ); | ||
} | ||
|
||
// Reporting | ||
Type sigmaP = exp(log_sigmaP); | ||
Type sigmaM = exp(log_sigmaM); | ||
|
||
REPORT( sigmaP ); | ||
REPORT( sigmaM ); | ||
REPORT( x_t ); | ||
|
||
ADREPORT( sigmaP ); | ||
ADREPORT( sigmaM ); | ||
ADREPORT( x_t ); | ||
|
||
return jnll; | ||
} |
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file not shown.