Skip to content

Commit

Permalink
RF: Simplify high-pass filtering in algorithms.confounds
Browse files Browse the repository at this point in the history
Legendre and cosine detrending are implemented almost identically,
although with several minor variations. Here I separate regressor
creation from detrending to unify the implementations.

This now uses `np.linalg.pinv(X)` to estimate the betas in both cases,
rather than using `np.linalg.lstsq` in the cosine filter. lstsq uses SVD
and can thus fail to converge in rare cases. Under no circumstances
should (X.T @ X) be singular, so the pseudoinverse is unique and
precisely what we want.
  • Loading branch information
effigies committed May 30, 2024
1 parent 9f17357 commit 055285d
Showing 1 changed file with 46 additions and 38 deletions.
84 changes: 46 additions & 38 deletions nipype/algorithms/confounds.py
Original file line number Diff line number Diff line change
Expand Up @@ -1185,31 +1185,61 @@ def is_outlier(points, thresh=3.5):
return timepoints_to_discard


def cosine_filter(
data, timestep, period_cut, remove_mean=True, axis=-1, failure_mode="error"
def _make_cosine_regressors(ntimepoints, timestep, period_cut):
return _full_rank(_cosine_drift(period_cut, timestep * np.arange(ntimepoints)))[0]


def _make_legendre_regressors(ntimepoints, degree):
X = np.ones((ntimepoints, 1)) # quick way to calc degree 0
for i in range(degree):
polynomial_func = Legendre.basis(i + 1)
value_array = np.linspace(-1, 1, ntimepoints)
X = np.hstack((X, polynomial_func(value_array)[:, np.newaxis]))
return X


def _high_pass_filter(
data, *args, filter_type, remove_mean=True, axis=-1, failure_mode="error"
):
datashape = data.shape
timepoints = datashape[axis]
if datashape[0] == 0 and failure_mode != "error":
return data, np.array([])

data = data.reshape((-1, timepoints))
filters = {
'cosine': _make_cosine_regressors,
'legendre': _make_legendre_regressors,
}

frametimes = timestep * np.arange(timepoints)
X = _full_rank(_cosine_drift(period_cut, frametimes))[0]
X = filters[filter_type](timepoints, *args)
non_constant_regressors = X[:, :-1] if X.shape[1] > 1 else np.array([])

betas = np.linalg.lstsq(X, data.T)[0]
data = data.reshape((-1, timepoints))

betas = np.linalg.pinv(X) @ data.T

if not remove_mean:
X = X[:, :-1]
betas = betas[:-1]

residuals = data - X.dot(betas).T

residuals = data - (X @ betas).T
return residuals.reshape(datashape), non_constant_regressors


def cosine_filter(
data, timestep, period_cut, remove_mean=True, axis=-1, failure_mode="error"
):
return _high_pass_filter(
data,
timestep,
period_cut,
filter_type='cosine',
remove_mean=remove_mean,
axis=axis,
failure_mode=failure_mode,
)


def regress_poly(degree, data, remove_mean=True, axis=-1, failure_mode="error"):
"""
Returns data with degree polynomial regressed out.
Expand All @@ -1221,36 +1251,14 @@ def regress_poly(degree, data, remove_mean=True, axis=-1, failure_mode="error"):
IFLOGGER.debug(
"Performing polynomial regression on data of shape %s", str(data.shape)
)

datashape = data.shape
timepoints = datashape[axis]
if datashape[0] == 0 and failure_mode != "error":
return data, np.array([])

# Rearrange all voxel-wise time-series in rows
data = data.reshape((-1, timepoints))

# Generate design matrix
X = np.ones((timepoints, 1)) # quick way to calc degree 0
for i in range(degree):
polynomial_func = Legendre.basis(i + 1)
value_array = np.linspace(-1, 1, timepoints)
X = np.hstack((X, polynomial_func(value_array)[:, np.newaxis]))

non_constant_regressors = X[:, :-1] if X.shape[1] > 1 else np.array([])

# Calculate coefficients
betas = np.linalg.pinv(X).dot(data.T)

# Estimation
if remove_mean:
datahat = X.dot(betas).T
else: # disregard the first layer of X, which is degree 0
datahat = X[:, 1:].dot(betas[1:, ...]).T
regressed_data = data - datahat

# Back to original shape
return regressed_data.reshape(datashape), non_constant_regressors
return _high_pass_filter(
data,
degree,
filter_type='legendre',
remove_mean=remove_mean,
axis=axis,
failure_mode=failure_mode,
)


def combine_mask_files(mask_files, mask_method=None, mask_index=None):
Expand Down

0 comments on commit 055285d

Please sign in to comment.