Data assembly
directory: Scripts for querying, filtering, and processing spectral and label data.pca_kmeans.ipynb
: Notebook for conducting an exploratory analysis of the data, including principal component analysis and k-means clustering of XAS spectra.topology_classifier.ipynb
: Notebook for training a neural network classifier of band topology from XAS spectral inputs.
-
Clone the repository:
git clone https://github.com/ninarina12/XAS_Topo.git
cd XAS_Topo
-
Create a virtual environment for the project:
conda create -n xas_topo python=3.7.5
conda activate xas_topo
-
Install packages:
pip install -r requirements.txt -f https://pytorch-geometric.com/whl/torch-${TORCH}+${CUDA}.html
where
${TORCH}
and${CUDA}
should be replaced by the specific CUDA version (e.g.cpu
,cu102
) and PyTorch version (e.g.1.9.1
), respectively. For example:pip install -r requirements.txt -f https://pytorch-geometric.com/whl/torch-1.9.1+cu102.html
N. Andrejevic*, J. Andrejevic*, B. A. Bernevig, N. Regnault, C. H. Rycroft, and M. Li. (*=equal contributions) Machine learning spectral indicators of topology. arXiv preprint arXiv:2003.00994 (2020).