-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsim_CrO20BiSbTe20.py
101 lines (82 loc) · 4.02 KB
/
sim_CrO20BiSbTe20.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
import numpy as np
from utils.utils_format import format_parameters, format_metadata, make_dirs, clean_dirs
from utils.utils_simulate import u, bc, run
# data properties
num_samples = 100000 # number of examples to generate
N = 256 # number of q points for reflectivity plot
q_min = 0.01
q_max = 0.172
q = np.linspace(q_min, q_max, N) # q points at which to sample reflectivity (A^-1)
t_min = 2. # thickness resolution (<= wavelen)
# instrument properties
wavelen = 5.35 # neutron wavelength (A)
res = 0.5*(0.001 + 0.0001) # instrument resolution
dres = 0.5*(0.001 - 0.0001) # uncertainty in instrument resolution
log_bkg = -6 # instrument background (log10)
dlog_bkg = 2 # uncertainty in instrument background (log10)
# sample properties
def init_sample():
sample_name = 'CrO20_BiSbTe20' # name of experiment sample
r = 0 # max ratio m_prox/m_FM (emu/cm^3)
layer_names = [r'$\alpha-Al_2O_3$', '$Cr_2O_3$', '$Cr_2O_3$\ninterface', '$(Bi,Sb)_2Te_3$\ninterface', '$(Bi,Sb)_2Te_3$', 'Te', '$TeO_2$']
rho = [3.95, 5.22, 5.22, 0.2*7.7 + 0.8*6.5, 0.2*7.7 + 0.8*6.5, 6.24, 5.67] # nominal densities (g/cm^3)
M = [101.96, 151.99, 151.99, 0.2*800.76 + 0.8*626.32, 0.2*800.76 + 0.8*626.32, 127.6, 159.6] # molar masses (g/mol)
# variables (v) = [d, s, magn]
# b = neutron scattering length
# dens = density (g/cm^3)/u/molar mass of compound (g/mol) = density (fu/A^3)
# d = layer thickness (A)
# s = roughness of layer top surface (A)
# magn = magnetization (uB/fu)
# substrate
b_sub = bc.Al*2+bc.O*3
dens_sub = np.array([[rho[0]/u/M[0]]])
ddens_sub = 0.05*dens_sub
v_sub = np.array([[0, 3., 0]])
dv_sub = np.array([[0, 0., 0]])
# main1 (2 layers)
b_main1 = bc.Cr*2+bc.O*3
dens_main1 = np.array([[rho[1]/u/M[1]]])
ddens_main1 = 0.2*dens_main1
v_main1 = np.array([[200., 1., 0], [10., 5., 0.4]])
dv_main1 = np.array([[20., 0., 0], [10., 5., 0.4]])
# main2 (2 layers)
b_main2 = bc.Bi*0.4+bc.Sb*1.6+bc.Te*3
dens_main2 = np.array([[rho[3]/u/M[3]]])
ddens_main2 = 0.3*dens_main2
v_main2 = np.array([[10., 1., 0.4], [180., 20., 0.]])
dv_main2 = np.array([[10., 0., 0.4], [20., 10., 0.]])
# cap
b_cap = [bc.Te, bc.Te+bc.O*2]
dens_cap = np.array([[rho[5]/u/M[5]], [rho[6]/u/M[6]]])
ddens_cap = np.array([[0.5], [0.5]])*dens_cap
v_cap = np.array([[90., 30., 0], [25., 20., 0]])
dv_cap = np.array([[20., 10., 0], [10., 10., 0]])
# interfacial FM layer(s)
prox = np.array([[1,1], # main1, sublayer 2
[2,0]]) # main2, sublayer 1
header = ['dens_sub', 'dens_AFM', 'dens_AFM', 'dens_TI', 'dens_TI', 'dens_cap', 'dens_ox',
'd_sub', 'd_AFM', 'd_iAFM', 'd_prox', 'd_TI', 'd_cap', 'd_ox',
's_sub', 's_AFM', 's_iAFM', 's_prox', 's_TI', 's_cap', 's_ox',
'magn_sub', 'magn_AFM', 'magn_iAFM', 'magn_prox', 'magn_TI', 'magn_cap', 'magn_ox']
# format parameters
b, dens, ddens, v, dv, stack, dstack = format_parameters(b_sub, b_main1, b_main2, b_cap,
dens_sub, dens_main1, dens_main2, dens_cap,
ddens_sub, ddens_main1, ddens_main2,
ddens_cap, v_sub, v_main1, v_main2, v_cap,
dv_sub, dv_main1, dv_main2, dv_cap)
sample_props = sample_name, layer_names, rho, M, stack, dstack, prox
params = b, dens, ddens, v, dv, prox, r
return sample_props, header, params, stack, dstack
if __name__ == "__main__":
# build sample
sample_props, header, params, stack, dstack = init_sample()
# create metadata
data_props = N, q_min, q_max, t_min
inst_props = wavelen, res, dres, log_bkg, dlog_bkg
meta = format_metadata(data_props, inst_props, sample_props, params[-1])
# make directories
data_dir, data_files, comm, rank, start, stop, size, t0 = make_dirs(num_samples, sample_props[0], meta)
# run simulations
run(data_files, start, stop, q, t_min, *inst_props, *params)
# clean up files
clean_dirs(data_dir, data_files, comm, rank, size, t0, header + ['I_res', 'I_bkg'])