- 1.0 Python for Data Science
- 1.1 Python Basics
- 1.2 NumPy
- 1.3 Pandas
- 1.4 Matplotlib
- 1.5 SciPy
- 1.6 scikit-learn
- 2.0 Working with NHS Data
- 3.0 Data Science workflow
- 3.1 Descriptive Statistics
- 3.2 Data Visualisation
- 3.3 Data Preparation
- 3.4 Feature Selection
- 3.5 Evaluate Model Performance
- 3.6 Test-Train
- 3.7 Cross Validation
- 3.8 Algorithm Performance Metrics
- 3.8.1 Classification Algorithms
- 3.8.2 Regression Algorithms
- 3.9 Hyper Parameter Tuning
- 3.10 Automation
- 3.11 Deployment
- 4.0 Ethics in Data Science
- 4.1 Algorithmic Bias
- 4.2 Privacy, Transparency and Trust
- 5.0 Reproducible analytical pipelines
- 5.1 Coding in the open
- 5.1.1 Open Data
- 5.1.2 Privileged Credentials
- 5.1.3 Sensitive Information
- 5.1.4 Proprietary Information
- 5.6 Quality Assurance (QA)
- 5.7 Documentation
- 5.8 Modular Code
- 5.9 Unit Testing
- 5.10 Tidy Data
- 5.1 Coding in the open
-
Notifications
You must be signed in to change notification settings - Fork 0
License
nhs-pycom/nhs-data-science-introduction
Folders and files
Name | Name | Last commit message | Last commit date | |
---|---|---|---|---|
Repository files navigation
About
No description, website, or topics provided.
Resources
License
Stars
Watchers
Forks
Releases
No releases published
Packages 0
No packages published