Skip to content

Learn to map surrounding vehicles onto a bird's eye view of the scene.

License

Notifications You must be signed in to change notification settings

ndrplz/surround_vehicles_awareness

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

13 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Learning to Map Vehicles into Bird's Eye View

This code accompanies the paper "Learning to map surrounding vehicles into bird's eye view using synthetic data".

It contains the code for loading data and pre-trained SDPN model proposed in the paper.

How-to-run

Script entry-point is in main.py.

When main.py is run, pretrained weights are automatically downloaded and injected in the model.

Model is then used to perform and inference on a sample data, mapping a car from the dashboard camera view to the bird's eye view of the scene. If everything works correctly, the output should look like this.

Dependencies

The code was developed with the following configuration:

  • python 2.7.11
  • numpy 1.11.2
  • opencv 3.1.0
  • Theano 0.9.0.dev3
  • Keras 1.1.2

Other configuration will reasonably work, but have never been explicitly tested.

Dataset

In this repository only one example is provided, to the end of verifying that the model is working correctly.

The whole dataset, which comprises more than 1M couples of bounding boxes, can be found here.

To get an idea of how the data look like you can check this video.

About

Learn to map surrounding vehicles onto a bird's eye view of the scene.

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages