Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Old pandas compat #17

Merged
merged 6 commits into from
Mar 18, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 3 additions & 1 deletion .github/workflows/pytest.yml
Original file line number Diff line number Diff line change
Expand Up @@ -9,7 +9,7 @@ jobs:
tox:
strategy:
matrix:
python-version: ["3.9", "3.10", "3.11", "3.12"]
python-version: ["3.8", "3.9", "3.10", "3.11", "3.12"]
os: [windows-latest, ubuntu-latest]

runs-on: ${{ matrix.os }}
Expand All @@ -28,5 +28,7 @@ jobs:
key: ${{ runner.os }}-build-${{ matrix.python-version }}
- name: install-reqs
run: python -m pip install --upgrade tox virtualenv setuptools pip -r requirements-dev.txt
- name: install-modin
run: python -m pip install --upgrade modin[dask]
- name: Run pytest
run: pytest tests --cov=narwhals --cov=tests --cov-fail-under=50
10 changes: 7 additions & 3 deletions narwhals/dataframe.py
Original file line number Diff line number Diff line change
Expand Up @@ -169,15 +169,17 @@ def __init__(
elif (pd := get_pandas()) is not None and isinstance(df, pd.DataFrame):
self._dataframe = PandasDataFrame(df, implementation="pandas")
self._implementation = "pandas"
elif (mpd := get_modin()) is not None and isinstance(df, mpd.DataFrame):
elif (mpd := get_modin()) is not None and isinstance(
df, mpd.DataFrame
): # pragma: no cover
self._dataframe = PandasDataFrame(df, implementation="modin")
self._implementation = "modin"
elif (cudf := get_cudf()) is not None and isinstance(
df, cudf.DataFrame
): # pragma: no cover
self._dataframe = PandasDataFrame(df, implementation="cudf")
self._implementation = "cudf"
elif hasattr(df, "__narwhals_dataframe__"):
elif hasattr(df, "__narwhals_dataframe__"): # pragma: no cover
self._dataframe = df.__narwhals_dataframe__()
self._implementation = "custom"
else:
Expand Down Expand Up @@ -222,7 +224,9 @@ def __init__(
elif (pd := get_pandas()) is not None and isinstance(df, pd.DataFrame):
self._dataframe = PandasDataFrame(df, implementation="pandas")
self._implementation = "pandas"
elif (mpd := get_modin()) is not None and isinstance(df, mpd.DataFrame):
elif (mpd := get_modin()) is not None and isinstance(
df, mpd.DataFrame
): # pragma: no cover
self._dataframe = PandasDataFrame(df, implementation="modin")
self._implementation = "modin"
elif (cudf := get_cudf()) is not None and isinstance(
Expand Down
7 changes: 6 additions & 1 deletion narwhals/pandas_like/group_by.py
Original file line number Diff line number Diff line change
Expand Up @@ -8,6 +8,8 @@
from typing import Callable
from typing import Iterable

from packaging.version import parse

from narwhals.pandas_like.utils import dataframe_from_dict
from narwhals.pandas_like.utils import evaluate_simple_aggregation
from narwhals.pandas_like.utils import horizontal_concat
Expand Down Expand Up @@ -122,7 +124,10 @@ def func(df: Any) -> Any:
out_names.append(result_keys.name)
return pd.Series(out_group, index=out_names)

result_complex = grouped.apply(func, include_groups=False)
if parse(pd.__version__) < parse("2.2.0"):
result_complex = grouped.apply(func)
else:
result_complex = grouped.apply(func, include_groups=False)

if result_simple is not None:
result = pd.concat(
Expand Down
1 change: 0 additions & 1 deletion requirements-dev.txt
Original file line number Diff line number Diff line change
@@ -1,5 +1,4 @@
covdefaults
modin[dask]
pandas
polars
pre-commit
Expand Down
21 changes: 15 additions & 6 deletions tests/test_common.py
Original file line number Diff line number Diff line change
@@ -1,9 +1,9 @@
from __future__ import annotations

import os
import warnings
from typing import Any

import modin.pandas as mpd
import numpy as np
import pandas as pd
import polars as pl
Expand All @@ -15,11 +15,17 @@
df_pandas = pd.DataFrame({"a": [1, 3, 2], "b": [4, 4, 6], "z": [7.0, 8, 9]})
df_polars = pl.DataFrame({"a": [1, 3, 2], "b": [4, 4, 6], "z": [7.0, 8, 9]})
df_lazy = pl.LazyFrame({"a": [1, 3, 2], "b": [4, 4, 6], "z": [7.0, 8, 9]})
with warnings.catch_warnings():
warnings.filterwarnings("ignore", category=UserWarning)
df_mpd = mpd.DataFrame(
mpd.DataFrame({"a": [1, 3, 2], "b": [4, 4, 6], "z": [7.0, 8, 9]})
)

if os.environ.get("CI", None):
import modin.pandas as mpd

with warnings.catch_warnings():
warnings.filterwarnings("ignore", category=UserWarning)
df_mpd = mpd.DataFrame(
pd.DataFrame({"a": [1, 3, 2], "b": [4, 4, 6], "z": [7.0, 8, 9]})
)
else:
df_mpd = df_pandas.copy()


@pytest.mark.parametrize(
Expand Down Expand Up @@ -234,6 +240,9 @@ def test_convert_pandas(df_raw: Any) -> None:


@pytest.mark.parametrize("df_raw", [df_polars, df_pandas, df_mpd])
@pytest.mark.filterwarnings(
r"ignore:np\.find_common_type is deprecated\.:DeprecationWarning"
)
def test_convert_numpy(df_raw: Any) -> None:
result = nw.DataFrame(df_raw).to_numpy()
expected = np.array([[1, 3, 2], [4, 4, 6], [7.0, 8, 9]]).T
Expand Down
Loading