Introduction WIP
ONLY WORK FOR ONE STATE NOW
Download all zoning PDFs and store in S3 in the format
zoning/<target_state>/zoning-<town_name>.pdf
check Supported Config below for available configs
cp config/base.yaml config/<experiment_name>.yaml
cp .env.example .env
Change the config. You can refer to config/connecticut.yaml
and
Fill .env
with corresponding API keys.
dotenv will not override the env variable if it's already set.
python run.py <experiment_name>
Default: data/<state_name>/pdf
Run python -m zoning.ocr --config-name <state_name>
Default: data/<state_name>/ocr
To skip this stage, ask for ocr results and put them in data/<state_name>/ocr
Default: data/<state_name>/ocr
Run python -m zoning.format_ocr --config-name <state_name>
Default: results/<experiment_name>/format_ocr
A Docker Compose setup for running a full ElasticSearch stack with Logstash and
Kibana is provided by the Docker Organization. This is the easiest way to run
ElasticSearch locally, but it requires having Docker available on your machine.
If you have Docker available, you can clone the repository and start the cluster
by running:
git clone https://github.com/maxdumas/awesome-compose
cd awesome-compose/elasticsearch-logstash-kibana
docker compose up
The initial startup may take some time.
To all clear existing entries, use
curl -X DELETE 'http://localhost:9200/_all'
Default: data/<state_name>/format_ocr
Run python -m zoning.index --config-name <state_name>
Default: None
Default: None
Run python -m zoning.search --config-name <state_name>
Default: data/<state_name>/search
Default: data/<state_name>/search
Run python -m zoning.prompt --config-name <state_name>
Default: data/<state_name>/prompt
Default: data/<state_name>/prompt
Run python -m zoning.llm <state_name>
Warning: this is different to --config-name <state_name>
in previous code
because Typer
does not work well with omegaconf
Default: data/<state_name>/llm
Default: data/<state_name>/search
Run python -m zoning.normalization --config-name <state_name>
Default: data/<state_name>/normalization
Default: data/<state_name>/normalization
python -m zoning.eval --config-name <state_name>
Default: data/<state_name>/eval
Default: data/<state_name>/eval
- run
streamlit run viz/viz.py
and use larger resolusion. - Select files in input data location
run the following code for type check/format check/etc before commit
pre-commit autoupdate
pre-commit run --all-files
WIP