The module implements a simple API interface for large language models which run on Ollama, Anthopic, Mistral and OpenAI. The module implements the ability to:
- Maintain a session of messages;
- Tool calling support, including using your own tools (aka Tool plugins);
- Create embedding vectors from text;
- Stream responses;
- Multi-modal support (aka, Images, Audio and Attachments);
- Text-to-speech (OpenAI only) for completions
There is a command-line tool included in the module which can be used to interact with the API. If you have docker installed, you can use the following command to run the tool, without installation:
# Display version, help
docker run ghcr.io/mutablelogic/go-llm version
docker run ghcr.io/mutablelogic/go-llm --help
# Interact with Claude to retrieve news headlines, assuming
# you have an API key for both Anthropic and NewsAPI
docker run -e ANTHROPIC_API_KEY -e NEWSAPI_KEY \
ghcr.io/mutablelogic/go-llm \
chat mistral-small-latest --prompt "What is the latest news?"
See below for more information on how to use the command-line tool (or how to
install it if you have a go
compiler).
See the documentation here for integration into your own code.
For each LLM provider, you create an agent which can be used to interact with the API. To create an Ollama agent,
import (
"github.com/mutablelogic/go-llm/pkg/ollama"
)
func main() {
// Create a new agent - replace the URL with the one to your Ollama instance
agent, err := ollama.New("https://ollama.com/api/v1/")
if err != nil {
panic(err)
}
// ...
}
To create an Anthropic agent with an API key stored as an environment variable,
import (
"github.com/mutablelogic/go-llm/pkg/anthropic"
)
func main() {
// Create a new agent
agent, err := anthropic.New(os.Getenv("ANTHROPIC_API_KEY"))
if err != nil {
panic(err)
}
// ...
}
For Mistral models, you can use:
import (
"github.com/mutablelogic/go-llm/pkg/mistral"
)
func main() {
// Create a new agent
agent, err := mistral.New(os.Getenv("MISTRAL_API_KEY"))
if err != nil {
panic(err)
}
// ...
}
Similarly for OpenAI models, you can use:
import (
"github.com/mutablelogic/go-llm/pkg/openai"
)
func main() {
// Create a new agent
agent, err := openai.New(os.Getenv("OPENAI_API_KEY"))
if err != nil {
panic(err)
}
// ...
}
You can append options to the agent creation to set the client/server communication options, such as user agent strings, timeouts, debugging, rate limiting, adding custom headers, etc. See here for more information.
There is also an aggregated agent which can be used to interact with multiple providers at once. This is useful if you want to use models from different providers simultaneously.
import (
"github.com/mutablelogic/go-llm/pkg/agent"
)
func main() {
// Create a new agent which aggregates multiple providers
agent, err := agent.New(
agent.WithAnthropic(os.Getenv("ANTHROPIC_API_KEY")),
agent.WithMistral(os.Getenv("MISTRAL_API_KEY")),
agent.WithOpenAI(os.Getenv("OPENAI_API_KEY")),
agent.WithOllama(os.Getenv("OLLAMA_URL")),
)
if err != nil {
panic(err)
}
// ...
}
You can generate a completion as follows,
import (
"github.com/mutablelogic/go-llm"
)
func completion(ctx context.Context, agent llm.Agent) (string, error) {
completion, err := agent.
Model(ctx, "claude-3-5-haiku-20241022").
Completion((ctx, "Why is the sky blue?")
if err != nil {
return "", err
} else {
return completion.Text(0), nil
}
}
The zero index argument on completion.Text(int)
indicates you want the text from the zero'th completion choice, for providers who can generate serveral different choices simultaneously.
Use one of the following options as an argument to the Completion
method to customize the output format of the completion, which needs to be paired with the right model:
llm.WithFormat("text")
- Generate text output (default).llm.WithFormat("json")
- Generate JSON output.llm.WithFormat("image", "jpeg")
- Generate JPEG image output (for models which support it).llm.WithFormat("audio", "mp3")
- Generate audio output (for models which support it). Possible values aremp3
,opus
,aac
,flac
,wav
, andpcm
.
You create a chat session with a model as follows,
import (
"github.com/mutablelogic/go-llm"
)
func session(ctx context.Context, agent llm.Agent) error {
// Create a new chat session
session := agent.
Model(ctx, "claude-3-5-haiku-20241022").
Context()
// Repeat forever
for {
err := session.FromUser(ctx, "hello")
if err != nil {
return err
}
// Print the response for the zero'th completion
fmt.Println(session.Text(0))
}
}
The Context
object will continue to store the current session and options, and will
ensure the session is maintained across multiple completion calls.
You can generate embedding vectors using an appropriate model with Ollama, OpenAI and Mistral models:
import (
"github.com/mutablelogic/go-llm"
)
func embedding(ctx context.Context, agent llm.Agent) error {
vector, err := agent.
Model(ctx, "mistral-embed").
Embedding(ctx, "hello")
// ...
}
Some models have vision
capability and others can also summarize text. For example, to
generate captions for an image,
import (
"github.com/mutablelogic/go-llm"
)
func generate_image_caption(ctx context.Context, agent llm.Agent, path string) (string, error) {
f, err := os.Open(path)
if err != nil {
return "", err
}
defer f.Close()
completion, err := agent.
Model(ctx, "claude-3-5-sonnet-20241022").
Completion((ctx, "Provide a short caption for this image", llm.WithAttachment(f))
if err != nil {
return "", err
}
return completion.Text(0), nil
}
To summarize a text or PDF document is exactly the same using an Anthropic model, but maybe with a different prompt.
Streaming is supported with all providers, but Ollama cannot be used with streaming and tools
simultaneously. You provide a callback function of signature func(llm.Completion)
which will
be called as a completion is received.
import (
"github.com/mutablelogic/go-llm"
)
func generate_completion(ctx context.Context, agent llm.Agent, prompt string) (string, error) {
completion, err := agent.
Model(ctx, "claude-3-5-haiku-20241022").
Completion((ctx, "Why is the sky blue?", llm.WithStream(stream_callback))
if err != nil {
return "", err
} else {
return completion.Text(0), nil
}
}
func stream_callback(completion llm.Completion) {
// Print out the completion text on each call
fmt.Println(completion.Text(0))
}
All providers support tools, but not all models. Your own tools should implement the following interface:
package llm
// Definition of a tool
type Tool interface {
Name() string // The name of the tool
Description() string // The description of the tool
Run(context.Context) (any, error) // Run the tool with a deadline and
// return the result
}
For example, if you want to implement a tool which adds two numbers,
package addition
type Adder struct {
A float64 `name:"a" help:"The first number" required:"true"`
B float64 `name:"b" help:"The second number" required:"true"`
}
func (Adder) Name() string {
return "add_two_numbers"
}
func (Adder) Description() string {
return "Add two numbers together and return the result"
}
func (a Adder) Run(context.Context) (any, error) {
return a.A + a.B, nil
}
Then you can include your tool as part of the completion. It's possible that a completion will continue to call additional tools, in which case you should actually loop through completions until no tool calls are made.
import (
"github.com/mutablelogic/go-llm"
"github.com/mutablelogic/go-llm/pkg/tool"
)
func add_two_numbers(ctx context.Context, agent llm.Agent) (string, error) {
context := agent.Model(ctx, "claude-3-5-haiku-20241022").Context()
toolkit := tool.NewToolKit()
toolkit.Register(&Adder{})
// Get the tool call
if err := context.FromUser(ctx, "What is five plus seven?", llm.WithToolKit(toolkit)); err != nil {
return "", err
}
// Call tools
for {
calls := context.ToolCalls(0)
if len(calls) == 0 {
break
}
// Print out any intermediate messages
if context.Text(0) != "" {
fmt.Println(context.Text(0))
}
// Get the results from the toolkit
results, err := toolkit.Run(ctx, calls...)
if err != nil {
return "", err
}
// Get another tool call or a user response
if err := context.FromTool(ctx, results...); err != nil {
return "", err
}
}
// Return the result
return context.Text(0)
}
Parameters are implemented as struct fields, with tags. The tags you can include are:
name:""
- Set the name for the parameterjson:""
- Ifname
is not used, then the name is set from thejson
taghelp:":
- Set the description for the parameterrequired:""
- The parameter is required as part of the tool callenum:"a,b,c"
- The parameter value should be one of these comma-separated options
The transation of field types is as follows:
string
- Translates as JSONstring
uint
,int
- Translates to JSONinteger
float32
,float64
- Translates to JSONnumber
You can use the command-line tool to interact with the API. To build the tool, you can use the following command:
go install github.com/mutablelogic/go-llm/cmd/llm@latest
llm --help
The output is something like:
Usage: llm <command> [flags]
LLM agent command line interface
Flags:
-h, --help Show context-sensitive help.
--debug Enable debug output
-v, --verbose Enable verbose output
--timeout=DURATION Agent connection timeout
--ollama-endpoint=STRING Ollama endpoint ($OLLAMA_URL)
--anthropic-key=STRING Anthropic API Key ($ANTHROPIC_API_KEY)
--mistral-key=STRING Mistral API Key ($MISTRAL_API_KEY)
--open-ai-key=STRING OpenAI API Key ($OPENAI_API_KEY)
--gemini-key=STRING Gemini API Key ($GEMINI_API_KEY)
--news-key=STRING News API Key ($NEWSAPI_KEY)
Commands:
agents Return a list of agents
models Return a list of models
tools Return a list of tools
download Download a model
chat Start a chat session
complete Complete a prompt
embedding Generate an embedding
version Print the version of this tool
Run "llm <command> --help" for more information on a command.
This module is currently in development and subject to change. Please do file feature requests and bugs here. The license is Apache 2 so feel free to redistribute. Redistributions in either source code or binary form must reproduce the copyright notice, and please link back to this repository for more information:
go-llm
https://github.com/mutablelogic/go-llm/
Copyright (c) 2025 David Thorpe, All rights reserved.