Skip to content

Commit

Permalink
analys_b: 20231027 halvlösning på kurvlängd
Browse files Browse the repository at this point in the history
  • Loading branch information
mnerv committed Jan 17, 2024
1 parent 426c899 commit e14140a
Showing 1 changed file with 20 additions and 0 deletions.
20 changes: 20 additions & 0 deletions analys_b/20231027/4b-kurvlängd.tex
Original file line number Diff line number Diff line change
Expand Up @@ -35,5 +35,25 @@

\noindent\rule{\textwidth}{0.5pt}

\begin{equation}
\Delta s \approx \sqrt{x'(t)^2 + y'(t)^2}dt.
\label{eq:kurvlangd}
\end{equation}

Lösning:

\begin{align}
x'(t) &= e^t - e^{-t}\\
y'(t) &= 2
\end{align}

\begin{align}
\int_0^2 \sqrt{x'(t)^2 + y'(t)^2} dt &= \int_0^2 \sqrt{\left(e^t - e^{-t}\right)^2 + 2^2} dt \\
\int_0^2 \sqrt{e^{2t} + e^{-2t} + 2} dt &= \left[\begin{aligned}
u &= e^{2t} + e^{-2t} + 2\\
\frac{du}{dt} &= 2e^{2t} - 2e^{-2t} \Leftrightarrow \frac{du}{2} = e^{2t} - e^{-2t}dt
\end{aligned}\right]
\end{align}

\end{document}

0 comments on commit e14140a

Please sign in to comment.