Skip to content

Commit

Permalink
Lösning för Analys B 20230821 1c generaliserade integral
Browse files Browse the repository at this point in the history
Avgör om integralen är konvergent och beräkna.
  • Loading branch information
mnerv committed Jan 9, 2024
1 parent ce6aed5 commit afa56c0
Showing 1 changed file with 43 additions and 0 deletions.
43 changes: 43 additions & 0 deletions analys_b/20230821/1c-generaliserade_integral.tex
Original file line number Diff line number Diff line change
Expand Up @@ -28,5 +28,48 @@
\int_0^{\infty} \frac{e^{-x}}{\sqrt{1 + e^{-x}}} dx
\]
är konvergent och beräkna den i så fall.

\noindent\rule{\textwidth}{0.5pt}

Lösning:

\begin{align}
\int_0^{\infty} \frac{e^{-x}}{\sqrt{1 + e^{-x}}} dx &=
\left[\begin{aligned}
t &= -x\\
\frac{dt}{dx} &= -1 \ \Leftrightarrow\ dt = -dx
\end{aligned}\right] \\
&= \int_{0}^{\infty} \frac{e^t}{\sqrt{1 + e^t}} dt =
\left[\begin{aligned}
u &= 1 + e^t\\
\frac{du}{dt} &= e^t \ \Leftrightarrow\ du = e^t dt
\end{aligned}\right] \\
&= \int_0^\infty -\frac{1}{\sqrt{u}} du \\
&= \left[\ -2\sqrt{u}\ \right]_0^{\infty}
\end{align}

Vi byter tillbaka variabel $u = 1 + e^t$

\begin{equation}
\left[-2\sqrt{1 + e^t}\ \right]_0^{\infty}.
\end{equation}

Och $t = -x$

\begin{equation}
\left[-2\sqrt{1 + e^{-x}}\ \right]_0^{\infty}.
\end{equation}

Beräkna integralen

\begin{align}
\lim_{T \rightarrow \infty} \left(\left(-2\sqrt{1 + e^{-T}}\right) - \left(-2\sqrt{1 + e^{-0}}\right)\right)
&= \left(\left(-2\sqrt{1 + 0}\right) - \left(-2\sqrt{2}\right)\right) \\
&= 2\sqrt{2} - 2\\
&= 2(\sqrt{2} - 1)
\end{align}

Svar: Ja, generaliserade integralen är konvergent med värde $2(\sqrt{2} - 1)$

\end{document}

0 comments on commit afa56c0

Please sign in to comment.