Skip to content

Commit

Permalink
Lösning för Analys B - 20231027 2.a
Browse files Browse the repository at this point in the history
  • Loading branch information
mnerv committed Oct 30, 2023
1 parent c1c1cc5 commit 51fbe43
Showing 1 changed file with 33 additions and 0 deletions.
33 changes: 33 additions & 0 deletions analysb/20231027/2a-koefficient-polynom.tex
Original file line number Diff line number Diff line change
Expand Up @@ -24,5 +24,38 @@

\begin{document}
Vad är koefficienten för $x^5$ i polynomet $(x + 2)^8$?

\noindent\rule{\textwidth}{0.5pt}

\textbf{Binomialkoefficient} (s.56)

\[
\binom{n}{k} = \frac{n!}{k!(n - k)!} = \frac{n \cdot (n - 1) \cdot ... \cdot (n - k + 1)}{k \cdot (k - 1) \cdot ... \cdot 1}
\]

\textbf{Sats 4.3}: (Binomialsatsen). \textit{För varje heltal} $n \leq 0$ \textit{gäller} (s.57)

\[
(a + b)^n = a^n + \tbinom{n}{1}a^{n - 1}b^1 + \tbinom{n}{2}a^{n - 2}b^2 + ... + \tbinom{n}{n - 1}a^1 b^{n - 1} + b^n.
\]

Lösning:

\[
(x + 2)^8 = x^8 + \tbinom{8}{1}x^7 \cdot 2^1 + \tbinom{8}{2}x^6 \cdot 2^2 + \tbinom{8}{3}x^5 \cdot 2^3 + \tbinom{8}{4}x^4 \cdot 2^4 + \tbinom{8}{5}x^3 \cdot 2^5 + \tbinom{8}{6}x^2 \cdot 2^6 + \tbinom{8}{7}x^1 \cdot 2^7 + 2^8
\]

Vi är intresserad i $\tbinom{8}{3}x^5 \cdot 2^3$.

\begin{align*}
\tbinom{8}{3}x^5 \cdot 2^3 &= \frac{8!}{3!(8 - 3)!} \cdot x^5 \cdot 2^3\\
&= \frac{8 \cdot 7 \cdot 6 \cdot 5!}{3! \cdot 5!} \cdot 8x^5\\
&= \frac{8 \cdot 7 \cdot 6 }{3 \cdot 2 \cdot 1} \cdot 8x^5\\
&= 4 \cdot 7 \cdot 2 \cdot 8x^5\\
&= 448x^5
\end{align*}

Svar: $448x^5$

\end{document}

0 comments on commit 51fbe43

Please sign in to comment.