Skip to content

mithilgotarne/Image-Quantization-and-Compression

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

11 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Image Quantization using Kmeans and Image compression using PCA

Pre-requsite:

Make sure you have anaconda, scikit-learn and scikit-image

1. Color Quantization

Used kmeans clustering to create centroid from sample of 1000 points in image array / raster. Then predicted center for each point in the raster and ploted them which resulted in quantized image of the original image

How to Run:

  1. run python quantize.py <imagefilePath> <valueOfK>

    example python quantize.py images/image3.jpg 32

Output:

  • Output images are stored in folder quantizedImages as filename-<kvalue>k.jpg

Report:

Image Original File Size Value of k used Image Quality Image Size
Image1 355.4K 2 Just two colors visible sort of black and light blue 302.4K
Image1 355.4K 8 Some color details missing in the sky 334K
Image1 355.4K 16 Almost similar 334.4K
Image2 536.6K 8 Object edges are blur 292.1K
Image2 536.6K 16 Blur dark colors 296.9K
Image2 536.6K 64 Almost similar 285.9K
Image3 598.4k 16 Blur 402.4k
Image3 598.4k 32 Less Blur 411.6K
Image3 598.4k 64 Almost similar 414.3K

References

2. PCA for Images

Ran PCA with different number of components. Transformed input array of every color channel i.e. for Red, Green and Blue into pca components. Then inverse transformed pca components to array. Plotted this arrays of all channel to for compressed images.

How to Run:

  1. cd into path/to/partIII

  2. run python compress.py <imagefilePath> <valueOfPrincipalComponents>

    example python compress.py images/image3.jpg 100

Output:

  • Output images are stored in folder compressedImages as filename-<pcvalue>pca.jpg

Report:

Image Original File Size Value of Principal Components Image Quality Image Size
Image1 355.4K 100 Multi-colored noise 480.1K
Image1 355.4K 150 Multi-colored noise 514.1K
Image1 355.4K 200 Multi-colored noise 532.1K
Image2 536.6K 150 Noise in white color 292.1K
Image2 536.6K 200 Less Noise in white color 296.9K
Image2 536.6K 500 Almost similar with un-noticable noise in white color 285.9K
Image3 598.4k 800 Hazy with noise in white color 402.4k
Image3 598.4k 1000 Hazy 411.6K
Image3 598.4k 1200 Almost similar to original 414.3K

References

About

Image Quantization using Kmeans and Image compression using PCA

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages