Skip to content

Commit

Permalink
[docs] documentation for changing predictors batch sizes (#1514)
Browse files Browse the repository at this point in the history
  • Loading branch information
felixdittrich92 authored Mar 15, 2024
1 parent c2b197d commit dddc2df
Show file tree
Hide file tree
Showing 4 changed files with 13 additions and 3 deletions.
10 changes: 10 additions & 0 deletions docs/source/using_doctr/using_models.rst
Original file line number Diff line number Diff line change
Expand Up @@ -298,6 +298,16 @@ For instance, this snippet instantiates an end-to-end ocr_predictor working with
from doctr.model import ocr_predictor
model = ocr_predictor('linknet_resnet18', pretrained=True, assume_straight_pages=False, preserve_aspect_ratio=True)
Additionally, you can change the batch size of the underlying detection and recognition predictors to optimize the performance depending on your hardware:

* `det_bs`: batch size for the detection model (default: 2)
* `reco_bs`: batch size for the recognition model (default: 128)

.. code:: python3
from doctr.model import ocr_predictor
model = ocr_predictor(pretrained=True, det_bs=4, reco_bs=1024)
To modify the output structure you can pass the following arguments to the predictor which will be handled by the underlying `DocumentBuilder`:

* `resolve_lines`: whether words should be automatically grouped into lines (default: True)
Expand Down
2 changes: 1 addition & 1 deletion doctr/models/classification/zoo.py
Original file line number Diff line number Diff line change
Expand Up @@ -42,7 +42,7 @@ def _crop_orientation_predictor(arch: str, pretrained: bool, **kwargs: Any) -> C
_model = classification.__dict__[arch](pretrained=pretrained)
kwargs["mean"] = kwargs.get("mean", _model.cfg["mean"])
kwargs["std"] = kwargs.get("std", _model.cfg["std"])
kwargs["batch_size"] = kwargs.get("batch_size", 64)
kwargs["batch_size"] = kwargs.get("batch_size", 128)
input_shape = _model.cfg["input_shape"][:-1] if is_tf_available() else _model.cfg["input_shape"][1:]
predictor = CropOrientationPredictor(
PreProcessor(input_shape, preserve_aspect_ratio=True, symmetric_pad=True, **kwargs), _model
Expand Down
2 changes: 1 addition & 1 deletion doctr/models/detection/zoo.py
Original file line number Diff line number Diff line change
Expand Up @@ -62,7 +62,7 @@ def _predictor(arch: Any, pretrained: bool, assume_straight_pages: bool = True,

kwargs["mean"] = kwargs.get("mean", _model.cfg["mean"])
kwargs["std"] = kwargs.get("std", _model.cfg["std"])
kwargs["batch_size"] = kwargs.get("batch_size", 1)
kwargs["batch_size"] = kwargs.get("batch_size", 2)
predictor = DetectionPredictor(
PreProcessor(_model.cfg["input_shape"][:-1] if is_tf_available() else _model.cfg["input_shape"][1:], **kwargs),
_model,
Expand Down
2 changes: 1 addition & 1 deletion doctr/models/recognition/zoo.py
Original file line number Diff line number Diff line change
Expand Up @@ -45,7 +45,7 @@ def _predictor(arch: Any, pretrained: bool, **kwargs: Any) -> RecognitionPredict

kwargs["mean"] = kwargs.get("mean", _model.cfg["mean"])
kwargs["std"] = kwargs.get("std", _model.cfg["std"])
kwargs["batch_size"] = kwargs.get("batch_size", 32)
kwargs["batch_size"] = kwargs.get("batch_size", 128)
input_shape = _model.cfg["input_shape"][:2] if is_tf_available() else _model.cfg["input_shape"][-2:]
predictor = RecognitionPredictor(PreProcessor(input_shape, preserve_aspect_ratio=True, **kwargs), _model)

Expand Down

0 comments on commit dddc2df

Please sign in to comment.