-
Notifications
You must be signed in to change notification settings - Fork 463
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[TF/PT] Add FAST detection model (#1443)
- Loading branch information
1 parent
347e8a5
commit 15d0dbf
Showing
18 changed files
with
1,140 additions
and
19 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,3 +1,4 @@ | ||
from .differentiable_binarization import * | ||
from .linknet import * | ||
from .fast import * | ||
from .zoo import * |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,6 @@ | ||
from doctr.file_utils import is_tf_available, is_torch_available | ||
|
||
if is_tf_available(): | ||
from .tensorflow import * | ||
elif is_torch_available(): | ||
from .pytorch import * # type: ignore[assignment] |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,256 @@ | ||
# Copyright (C) 2021-2024, Mindee. | ||
|
||
# This program is licensed under the Apache License 2.0. | ||
# See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details. | ||
|
||
# Credits: post-processing adapted from https://github.com/xuannianz/DifferentiableBinarization | ||
|
||
from typing import Dict, List, Tuple, Union | ||
|
||
import cv2 | ||
import numpy as np | ||
import pyclipper | ||
from shapely.geometry import Polygon | ||
|
||
from doctr.models.core import BaseModel | ||
|
||
from ..core import DetectionPostProcessor | ||
|
||
__all__ = ["_FAST", "FASTPostProcessor"] | ||
|
||
|
||
class FASTPostProcessor(DetectionPostProcessor): | ||
"""Implements a post processor for FAST model. | ||
Args: | ||
---- | ||
bin_thresh: threshold used to binzarized p_map at inference time | ||
box_thresh: minimal objectness score to consider a box | ||
assume_straight_pages: whether the inputs were expected to have horizontal text elements | ||
""" | ||
|
||
def __init__( | ||
self, | ||
bin_thresh: float = 0.3, | ||
box_thresh: float = 0.1, | ||
assume_straight_pages: bool = True, | ||
) -> None: | ||
super().__init__(box_thresh, bin_thresh, assume_straight_pages) | ||
self.unclip_ratio = 1.0 | ||
|
||
def polygon_to_box( | ||
self, | ||
points: np.ndarray, | ||
) -> np.ndarray: | ||
"""Expand a polygon (points) by a factor unclip_ratio, and returns a polygon | ||
Args: | ||
---- | ||
points: The first parameter. | ||
Returns: | ||
------- | ||
a box in absolute coordinates (xmin, ymin, xmax, ymax) or (4, 2) array (quadrangle) | ||
""" | ||
if not self.assume_straight_pages: | ||
# Compute the rectangle polygon enclosing the raw polygon | ||
rect = cv2.minAreaRect(points) | ||
points = cv2.boxPoints(rect) | ||
# Add 1 pixel to correct cv2 approx | ||
area = (rect[1][0] + 1) * (1 + rect[1][1]) | ||
length = 2 * (rect[1][0] + rect[1][1]) + 2 | ||
else: | ||
poly = Polygon(points) | ||
area = poly.area | ||
length = poly.length | ||
distance = area * self.unclip_ratio / length # compute distance to expand polygon | ||
offset = pyclipper.PyclipperOffset() | ||
offset.AddPath(points, pyclipper.JT_ROUND, pyclipper.ET_CLOSEDPOLYGON) | ||
_points = offset.Execute(distance) | ||
# Take biggest stack of points | ||
idx = 0 | ||
if len(_points) > 1: | ||
max_size = 0 | ||
for _idx, p in enumerate(_points): | ||
if len(p) > max_size: | ||
idx = _idx | ||
max_size = len(p) | ||
# We ensure that _points can be correctly casted to a ndarray | ||
_points = [_points[idx]] | ||
expanded_points: np.ndarray = np.asarray(_points) # expand polygon | ||
if len(expanded_points) < 1: | ||
return None # type: ignore[return-value] | ||
return ( | ||
cv2.boundingRect(expanded_points) # type: ignore[return-value] | ||
if self.assume_straight_pages | ||
else np.roll(cv2.boxPoints(cv2.minAreaRect(expanded_points)), -1, axis=0) | ||
) | ||
|
||
def bitmap_to_boxes( | ||
self, | ||
pred: np.ndarray, | ||
bitmap: np.ndarray, | ||
) -> np.ndarray: | ||
"""Compute boxes from a bitmap/pred_map: find connected components then filter boxes | ||
Args: | ||
---- | ||
pred: Pred map from differentiable linknet output | ||
bitmap: Bitmap map computed from pred (binarized) | ||
angle_tol: Comparison tolerance of the angle with the median angle across the page | ||
ratio_tol: Under this limit aspect ratio, we cannot resolve the direction of the crop | ||
Returns: | ||
------- | ||
np tensor boxes for the bitmap, each box is a 6-element list | ||
containing x, y, w, h, alpha, score for the box | ||
""" | ||
height, width = bitmap.shape[:2] | ||
boxes: List[Union[np.ndarray, List[float]]] = [] | ||
# get contours from connected components on the bitmap | ||
contours, _ = cv2.findContours(bitmap.astype(np.uint8), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) | ||
for contour in contours: | ||
# Check whether smallest enclosing bounding box is not too small | ||
if np.any(contour[:, 0].max(axis=0) - contour[:, 0].min(axis=0) < 2): | ||
continue | ||
# Compute objectness | ||
if self.assume_straight_pages: | ||
x, y, w, h = cv2.boundingRect(contour) | ||
points: np.ndarray = np.array([[x, y], [x, y + h], [x + w, y + h], [x + w, y]]) | ||
score = self.box_score(pred, points, assume_straight_pages=True) | ||
else: | ||
score = self.box_score(pred, contour, assume_straight_pages=False) | ||
|
||
if score < self.box_thresh: # remove polygons with a weak objectness | ||
continue | ||
|
||
if self.assume_straight_pages: | ||
_box = self.polygon_to_box(points) | ||
else: | ||
_box = self.polygon_to_box(np.squeeze(contour)) | ||
|
||
if self.assume_straight_pages: | ||
# compute relative polygon to get rid of img shape | ||
x, y, w, h = _box | ||
xmin, ymin, xmax, ymax = x / width, y / height, (x + w) / width, (y + h) / height | ||
boxes.append([xmin, ymin, xmax, ymax, score]) | ||
else: | ||
# compute relative box to get rid of img shape | ||
_box[:, 0] /= width | ||
_box[:, 1] /= height | ||
boxes.append(_box) | ||
|
||
if not self.assume_straight_pages: | ||
return np.clip(np.asarray(boxes), 0, 1) if len(boxes) > 0 else np.zeros((0, 4, 2), dtype=pred.dtype) | ||
else: | ||
return np.clip(np.asarray(boxes), 0, 1) if len(boxes) > 0 else np.zeros((0, 5), dtype=pred.dtype) | ||
|
||
|
||
class _FAST(BaseModel): | ||
"""FAST as described in `"FAST: Faster Arbitrarily-Shaped Text Detector with Minimalist Kernel Representation" | ||
<https://arxiv.org/pdf/2111.02394.pdf>`_. | ||
""" | ||
|
||
min_size_box: int = 3 | ||
assume_straight_pages: bool = True | ||
shrink_ratio = 0.1 | ||
|
||
def build_target( | ||
self, | ||
target: List[Dict[str, np.ndarray]], | ||
output_shape: Tuple[int, int, int], | ||
channels_last: bool = True, | ||
) -> Tuple[np.ndarray, np.ndarray, np.ndarray]: | ||
"""Build the target, and it's mask to be used from loss computation. | ||
Args: | ||
---- | ||
target: target coming from dataset | ||
output_shape: shape of the output of the model without batch_size | ||
channels_last: whether channels are last or not | ||
Returns: | ||
------- | ||
the new formatted target, mask and shrunken text kernel | ||
""" | ||
if any(t.dtype != np.float32 for tgt in target for t in tgt.values()): | ||
raise AssertionError("the expected dtype of target 'boxes' entry is 'np.float32'.") | ||
if any(np.any((t[:, :4] > 1) | (t[:, :4] < 0)) for tgt in target for t in tgt.values()): | ||
raise ValueError("the 'boxes' entry of the target is expected to take values between 0 & 1.") | ||
|
||
h: int | ||
w: int | ||
if channels_last: | ||
h, w, num_classes = output_shape | ||
else: | ||
num_classes, h, w = output_shape | ||
target_shape = (len(target), num_classes, h, w) | ||
|
||
seg_target: np.ndarray = np.zeros(target_shape, dtype=np.uint8) | ||
seg_mask: np.ndarray = np.ones(target_shape, dtype=bool) | ||
shrunken_kernel: np.ndarray = np.zeros(target_shape, dtype=np.uint8) | ||
|
||
for idx, tgt in enumerate(target): | ||
for class_idx, _tgt in enumerate(tgt.values()): | ||
# Draw each polygon on gt | ||
if _tgt.shape[0] == 0: | ||
# Empty image, full masked | ||
seg_mask[idx, class_idx] = False | ||
|
||
# Absolute bounding boxes | ||
abs_boxes = _tgt.copy() | ||
|
||
if abs_boxes.ndim == 3: | ||
abs_boxes[:, :, 0] *= w | ||
abs_boxes[:, :, 1] *= h | ||
polys = abs_boxes | ||
boxes_size = np.linalg.norm(abs_boxes[:, 2, :] - abs_boxes[:, 0, :], axis=-1) | ||
abs_boxes = np.concatenate((abs_boxes.min(1), abs_boxes.max(1)), -1).round().astype(np.int32) | ||
else: | ||
abs_boxes[:, [0, 2]] *= w | ||
abs_boxes[:, [1, 3]] *= h | ||
abs_boxes = abs_boxes.round().astype(np.int32) | ||
polys = np.stack( | ||
[ | ||
abs_boxes[:, [0, 1]], | ||
abs_boxes[:, [0, 3]], | ||
abs_boxes[:, [2, 3]], | ||
abs_boxes[:, [2, 1]], | ||
], | ||
axis=1, | ||
) | ||
boxes_size = np.minimum(abs_boxes[:, 2] - abs_boxes[:, 0], abs_boxes[:, 3] - abs_boxes[:, 1]) | ||
|
||
for poly, box, box_size in zip(polys, abs_boxes, boxes_size): | ||
# Mask boxes that are too small | ||
if box_size < self.min_size_box: | ||
seg_mask[idx, class_idx, box[1] : box[3] + 1, box[0] : box[2] + 1] = False | ||
continue | ||
|
||
# Negative shrink for gt, as described in paper | ||
polygon = Polygon(poly) | ||
distance = polygon.area * (1 - np.power(self.shrink_ratio, 2)) / polygon.length | ||
subject = [tuple(coor) for coor in poly] | ||
padding = pyclipper.PyclipperOffset() | ||
padding.AddPath(subject, pyclipper.JT_ROUND, pyclipper.ET_CLOSEDPOLYGON) | ||
shrunken = padding.Execute(-distance) | ||
|
||
# Draw polygon on gt if it is valid | ||
if len(shrunken) == 0: | ||
seg_mask[idx, class_idx, box[1] : box[3] + 1, box[0] : box[2] + 1] = False | ||
continue | ||
shrunken = np.array(shrunken[0]).reshape(-1, 2) | ||
if shrunken.shape[0] <= 2 or not Polygon(shrunken).is_valid: | ||
seg_mask[idx, class_idx, box[1] : box[3] + 1, box[0] : box[2] + 1] = False | ||
continue | ||
cv2.fillPoly(shrunken_kernel[idx, class_idx], [shrunken.astype(np.int32)], 1.0) # type: ignore[call-overload] | ||
# draw the original polygon on the segmentation target | ||
cv2.fillPoly(seg_target[idx, class_idx], [poly.astype(np.int32)], 1.0) # type: ignore[call-overload] | ||
|
||
# Don't forget to switch back to channel last if Tensorflow is used | ||
if channels_last: | ||
seg_target = seg_target.transpose((0, 2, 3, 1)) | ||
seg_mask = seg_mask.transpose((0, 2, 3, 1)) | ||
shrunken_kernel = shrunken_kernel.transpose((0, 2, 3, 1)) | ||
|
||
return seg_target, seg_mask, shrunken_kernel |
Oops, something went wrong.