Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fix: finetune error with cpu device #76

Merged
merged 3 commits into from
Jan 12, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
19 changes: 12 additions & 7 deletions src/mattersim/training/finetune_mattersim.py
Original file line number Diff line number Diff line change
Expand Up @@ -17,11 +17,14 @@
from mattersim.utils.logger_utils import get_logger

logger = get_logger()
torch.distributed.init_process_group(backend="nccl")
local_rank = int(os.environ["LOCAL_RANK"])


def main(args):
if args.device == "cuda":
torch.distributed.init_process_group(backend="nccl")
else:
torch.distributed.init_process_group(backend="gloo")
args_dict = vars(args)
if args.wandb and local_rank == 0:
wandb_api_key = (
Expand All @@ -48,7 +51,8 @@ def main(args):
np.random.seed(args.seed)
torch.manual_seed(args.seed)

torch.cuda.set_device(local_rank)
if args.device == "cuda":
torch.cuda.set_device(local_rank)

if args.train_data_path.endswith(".pkl"):
with open(args.train_data_path, "rb") as f:
Expand All @@ -72,12 +76,12 @@ def main(args):
forces,
stresses,
shuffle=True,
pin_memory=True,
pin_memory=(args.device == "cuda"),
is_distributed=True,
**args_dict,
)

device = "cuda" if torch.cuda.is_available() else "cpu"
device = args.device
# build energy normalization module
if args.re_normalize:
scale = AtomScaling(
Expand Down Expand Up @@ -109,7 +113,7 @@ def main(args):
energies,
forces,
stresses,
pin_memory=True,
pin_memory=(args.device == "cuda"),
is_distributed=True,
**args_dict,
)
Expand All @@ -125,7 +129,8 @@ def main(args):
if args.re_normalize:
potential.model.set_normalizer(scale)

potential.model = torch.nn.parallel.DistributedDataParallel(potential.model)
if args.device == "cuda":
potential.model = torch.nn.parallel.DistributedDataParallel(potential.model)
torch.distributed.barrier()

potential.train_model(
Expand All @@ -136,7 +141,7 @@ def main(args):
**args_dict,
)

if local_rank == 0 and args.save_checkpoint:
if local_rank == 0 and args.save_checkpoint and args.wandb:
wandb.save(os.path.join(args.save_path, "best_model.pth"))


Expand Down
67 changes: 41 additions & 26 deletions src/mattersim/utils/vasprun_to_xyz.py
Original file line number Diff line number Diff line change
@@ -1,37 +1,31 @@
# -*- coding: utf-8 -*-
import argparse
import os
import random

from ase.io import write

from mattersim.utils.atoms_utils import AtomsAdaptor

vasp_files = [
"work/data/H/vasp/vasprun.xml",
"work/data/H/vasp_2/vasprun.xml",
"work/data/H/vasp_3/vasprun.xml",
"work/data/H/vasp_4/vasprun.xml",
"work/data/H/vasp_5/vasprun.xml",
"work/data/H/vasp_6/vasprun.xml",
"work/data/H/vasp_7/vasprun.xml",
"work/data/H/vasp_8/vasprun.xml",
"work/data/H/vasp_9/vasprun.xml",
"work/data/H/vasp_10/vasprun.xml",
]
train_ratio = 0.8
validation_ratio = 0.1
test_ratio = 0.1

save_dir = "./xyz_files"
os.makedirs(save_dir, exist_ok=True)


def main():

def main(args):
vasp_files = []
for root, dirs, files in os.walk(args.data_path):
for file in files:
if file.endswith(".xml"):
vasp_files.append(os.path.join(root, file))

train_ratio = args.train_ratio
validation_ratio = args.validation_ratio

save_dir = args.save_path
os.makedirs(save_dir, exist_ok=True)

atoms_train = []
atoms_validation = []
atoms_test = []

random.seed(42)
random.seed(args.seed)

for vasp_file in vasp_files:
atoms_list = AtomsAdaptor.from_file(filename=vasp_file)
Expand All @@ -54,10 +48,31 @@ def main():

# Save the training, validation, and test datasets to xyz files

write(f"{save_dir}/train.xyz", atoms_train)
write(f"{save_dir}/valid.xyz", atoms_validation)
write(f"{save_dir}/test.xyz", atoms_test)
write(f"{save_dir}/train.xyz", atoms_train, format="extxyz")
write(f"{save_dir}/valid.xyz", atoms_validation, format="extxyz")
write(f"{save_dir}/test.xyz", atoms_test, format="extxyz")


if __name__ == "__main__":
main()
# Some important arguments
parser = argparse.ArgumentParser()

# path parameters
parser.add_argument("--data_path", type=str, default=None, help="vasprun data path")
parser.add_argument("--train_ratio", type=float, default=0.8, help="train ratio")
parser.add_argument(
"--validation_ratio", type=float, default=0.1, help="validation ratio"
)
parser.add_argument(
"--save_path",
type=str,
default="./xyz_files",
help="path to save the xyz files",
)
parser.add_argument(
"--seed",
type=int,
default=42,
)
args = parser.parse_args()
main(args)
Loading