Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[python-package] Accept numpy generators as random_state #6174

Merged
merged 7 commits into from
Nov 9, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
10 changes: 10 additions & 0 deletions python-package/lightgbm/compat.py
Original file line number Diff line number Diff line change
Expand Up @@ -36,6 +36,16 @@ def __init__(self, *args, **kwargs):

concat = None

"""numpy"""
try:
from numpy.random import Generator as np_random_Generator
except ImportError:
class np_random_Generator: # type: ignore
"""Dummy class for np.random.Generator."""

def __init__(self, *args, **kwargs):
pass

"""matplotlib"""
try:
import matplotlib # noqa: F401
Expand Down
6 changes: 3 additions & 3 deletions python-package/lightgbm/dask.py
Original file line number Diff line number Diff line change
Expand Up @@ -1142,7 +1142,7 @@ def __init__(
colsample_bytree: float = 1.,
reg_alpha: float = 0.,
reg_lambda: float = 0.,
random_state: Optional[Union[int, np.random.RandomState]] = None,
random_state: Optional[Union[int, np.random.RandomState, 'np.random.Generator']] = None,
n_jobs: Optional[int] = None,
importance_type: str = 'split',
client: Optional[Client] = None,
Expand Down Expand Up @@ -1347,7 +1347,7 @@ def __init__(
colsample_bytree: float = 1.,
reg_alpha: float = 0.,
reg_lambda: float = 0.,
random_state: Optional[Union[int, np.random.RandomState]] = None,
random_state: Optional[Union[int, np.random.RandomState, 'np.random.Generator']] = None,
n_jobs: Optional[int] = None,
importance_type: str = 'split',
client: Optional[Client] = None,
Expand Down Expand Up @@ -1517,7 +1517,7 @@ def __init__(
colsample_bytree: float = 1.,
reg_alpha: float = 0.,
reg_lambda: float = 0.,
random_state: Optional[Union[int, np.random.RandomState]] = None,
random_state: Optional[Union[int, np.random.RandomState, 'np.random.Generator']] = None,
n_jobs: Optional[int] = None,
importance_type: str = 'split',
client: Optional[Client] = None,
Expand Down
10 changes: 7 additions & 3 deletions python-package/lightgbm/sklearn.py
Original file line number Diff line number Diff line change
Expand Up @@ -15,7 +15,7 @@
from .compat import (SKLEARN_INSTALLED, LGBMNotFittedError, _LGBMAssertAllFinite, _LGBMCheckArray,
_LGBMCheckClassificationTargets, _LGBMCheckSampleWeight, _LGBMCheckXY, _LGBMClassifierBase,
_LGBMComputeSampleWeight, _LGBMCpuCount, _LGBMLabelEncoder, _LGBMModelBase, _LGBMRegressorBase,
dt_DataTable, pd_DataFrame)
dt_DataTable, np_random_Generator, pd_DataFrame)
from .engine import train

__all__ = [
Expand Down Expand Up @@ -448,7 +448,7 @@ def __init__(
colsample_bytree: float = 1.,
reg_alpha: float = 0.,
reg_lambda: float = 0.,
random_state: Optional[Union[int, np.random.RandomState]] = None,
random_state: Optional[Union[int, np.random.RandomState, 'np.random.Generator']] = None,
n_jobs: Optional[int] = None,
importance_type: str = 'split',
**kwargs
Expand Down Expand Up @@ -509,7 +509,7 @@ def __init__(
random_state : int, RandomState object or None, optional (default=None)
Random number seed.
If int, this number is used to seed the C++ code.
If RandomState object (numpy), a random integer is picked based on its state to seed the C++ code.
If RandomState or Generator object (numpy), a random integer is picked based on its state to seed the C++ code.
If None, default seeds in C++ code are used.
n_jobs : int or None, optional (default=None)
Number of parallel threads to use for training (can be changed at prediction time by
Expand Down Expand Up @@ -710,6 +710,10 @@ def _process_params(self, stage: str) -> Dict[str, Any]:

if isinstance(params['random_state'], np.random.RandomState):
params['random_state'] = params['random_state'].randint(np.iinfo(np.int32).max)
elif isinstance(params['random_state'], np_random_Generator):
params['random_state'] = int(
params['random_state'].integers(np.iinfo(np.int32).max)
)
if self._n_classes > 2:
for alias in _ConfigAliases.get('num_class'):
params.pop(alias, None)
Expand Down
7 changes: 4 additions & 3 deletions tests/python_package_test/test_sklearn.py
Original file line number Diff line number Diff line change
Expand Up @@ -534,11 +534,12 @@ def test_non_serializable_objects_in_callbacks(tmp_path):
assert gbm.booster_.attr_set_inside_callback == 40


def test_random_state_object():
@pytest.mark.parametrize("rng_constructor", [np.random.RandomState, np.random.default_rng])
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

forgot to add in my review... thanks very much for adding this to this test!

def test_random_state_object(rng_constructor):
X, y = load_iris(return_X_y=True)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1, random_state=42)
state1 = np.random.RandomState(123)
state2 = np.random.RandomState(123)
state1 = rng_constructor(123)
state2 = rng_constructor(123)
clf1 = lgb.LGBMClassifier(n_estimators=10, subsample=0.5, subsample_freq=1, random_state=state1)
clf2 = lgb.LGBMClassifier(n_estimators=10, subsample=0.5, subsample_freq=1, random_state=state2)
# Test if random_state is properly stored
Expand Down