Skip to content

Explore Open Data from the City of Seattle (Machine Learning project)

License

Notifications You must be signed in to change notification settings

mickaelandrieu/supervized_energy_regression_model

Repository files navigation

Predict CO2 emissions and total energy use of Seattle Buildings

How to get the dataset

You can download the dataset and its documentation on Kaggle

Local installation

python -m venv dev
source dev/Scripts/activate
pip install -r requirements.txt

Docker installation

Build the image

docker build --tag app:1.0 .

Train the model

  1. Download the RAW data ;
  2. Execute src/clean.py to create cleaned_data.csv ;
  3. Execute src/prepare_features.py to create training.pkl ;
  4. Execute src/create_folds.py to create training_folds.pkl ;
  5. Execute src/tune_hyper_parameters.py to get optimal parameters ;
  6. Execute src/best.py to train the model ;

Evaluate the performance of the models

python src/report.py --fold=1

fold value is in range [0,4]

Quality tools

python -m isort src/
python -m black src/
python -m flake8 src/ --count --statistics

LICENSE

This project is provided under the MIT license.

About

Explore Open Data from the City of Seattle (Machine Learning project)

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published