Skip to content

An anomaly detection library comprising state-of-the-art algorithms and features such as experiment management, hyper-parameter optimization, and edge inference.

License

Notifications You must be signed in to change notification settings

michelemoretti/anomalib

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

A library for benchmarking, developing and deploying deep learning anomaly detection algorithms


Key FeaturesGetting StartedDocsLicense

python pytorch openvino Codacy Badge black Nightly-Regression Test Pre-Merge Checks Docs Downloads


Introduction

Anomalib is a deep learning library that aims to collect state-of-the-art anomaly detection algorithms for benchmarking on both public and private datasets. Anomalib provides several ready-to-use implementations of anomaly detection algorithms described in the recent literature, as well as a set of tools that facilitate the development and implementation of custom models. The library has a strong focus on image-based anomaly detection, where the goal of the algorithm is to identify anomalous images, or anomalous pixel regions within images in a dataset. Anomalib is constantly updated with new algorithms and training/inference extensions, so keep checking!

Sample Image

Key features:

  • The largest public collection of ready-to-use deep learning anomaly detection algorithms and benchmark datasets.
  • PyTorch Lightning based model implementations to reduce boilerplate code and limit the implementation efforts to the bare essentials.
  • All models can be exported to OpenVINO Intermediate Representation (IR) for accelerated inference on intel hardware.
  • A set of inference tools for quick and easy deployment of the standard or custom anomaly detection models.

Getting Started

To get an overview of all the devices where anomalib as been tested thoroughly, look at the Supported Hardware section in the documentation.

Jupyter Notebooks

For getting started with a Jupyter Notebook, please refer to the Notebooks folder of this repository. Additionally, you can refer to a few created by the community:

Open In Colab by @bth5

by @innat

PyPI Install

You can get started with anomalib by just using pip.

pip install anomalib

Local Install

It is highly recommended to use virtual environment when installing anomalib. For instance, with anaconda, anomalib could be installed as,

yes | conda create -n anomalib_env python=3.8
conda activate anomalib_env
git clone https://github.com/openvinotoolkit/anomalib.git
cd anomalib
pip install -e .

Training

⚠️ Anomalib < v.0.4.0

By default python tools/train.py runs PADIM model on leather category from the MVTec AD (CC BY-NC-SA 4.0) dataset.

python tools/train.py    # Train PADIM on MVTec AD leather

Training a model on a specific dataset and category requires further configuration. Each model has its own configuration file, config.yaml , which contains data, model and training configurable parameters. To train a specific model on a specific dataset and category, the config file is to be provided:

python tools/train.py --config <path/to/model/config.yaml>

For example, to train PADIM you can use

python tools/train.py --config anomalib/models/padim/config.yaml

Alternatively, a model name could also be provided as an argument, where the scripts automatically finds the corresponding config file.

python tools/train.py --model padim

where the currently available models are:

Custom Dataset

It is also possible to train on a custom folder dataset. To do so, data section in config.yaml is to be modified as follows:

dataset:
  name: <name-of-the-dataset>
  format: folder
  path: <path/to/folder/dataset>
  normal_dir: normal # name of the folder containing normal images.
  abnormal_dir: abnormal # name of the folder containing abnormal images.
  normal_test_dir: null # name of the folder containing normal test images.
  task: segmentation # classification or segmentation
  mask: <path/to/mask/annotations> #optional
  extensions: null
  split_ratio: 0.2 # ratio of the normal images that will be used to create a test split
  image_size: 256
  train_batch_size: 32
  test_batch_size: 32
  num_workers: 8
  transform_config:
    train: null
    val: null
  create_validation_set: true
  tiling:
    apply: false
    tile_size: null
    stride: null
    remove_border_count: 0
    use_random_tiling: False
    random_tile_count: 16

⚠️ Anomalib > v.0.4.0 Beta - Subject to Change

We introduce a new CLI approach that uses PyTorch Lightning CLI. To train a model using the new CLI, one would call the following:

anomalib fit --config <path/to/new/config/file>

For instance, to train a PatchCore model, the following command would be run:

anomalib fit --config ./configs/model/patchcore.yaml

The new CLI approach offers a lot more flexibility, details of which are explained in the documentation.

Inference

⚠️ Anomalib < v.0.4.0

Anomalib includes multiple tools, including Lightning, Gradio, and OpenVINO inferencers, for performing inference with a trained model.

The following command can be used to run PyTorch Lightning inference from the command line:

python tools/inference/lightning_inference.py -h

As a quick example:

python tools/inference/lightning_inference.py \
    --config anomalib/models/padim/config.yaml \
    --weights results/padim/mvtec/bottle/weights/model.ckpt \
    --input datasets/MVTec/bottle/test/broken_large/000.png \
    --output results/padim/mvtec/bottle/images

If you want to run OpenVINO model, ensure that openvino apply is set to True in the respective model config.yaml.

optimization:
  openvino:
    apply: true

Example OpenVINO Inference:

python tools/inference/openvino_inference.py \
    --config anomalib/models/padim/config.yaml \
    --weights results/padim/mvtec/bottle/openvino/openvino_model.bin \
    --meta_data results/padim/mvtec/bottle/openvino/meta_data.json \
    --input datasets/MVTec/bottle/test/broken_large/000.png \
    --output results/padim/mvtec/bottle/images

Ensure that you provide path to meta_data.json if you want the normalization to be applied correctly.

You can also use Gradio Inference to interact with the trained models using a UI. Refer to our guide for more details.

A quick example:

python tools/inference/gradio_inference.py \
        --config ./anomalib/models/padim/config.yaml \
        --weights ./results/padim/mvtec/bottle/weights/model.ckpt

Hyperparameter Optimization

To run hyperparameter optimization, use the following command:

python tools/hpo/sweep.py \
    --model padim --model_config ./path_to_config.yaml \
    --sweep_config tools/hpo/sweep.yaml

For more details refer the HPO Documentation

Benchmarking

To gather benchmarking data such as throughput across categories, use the following command:

python tools/benchmarking/benchmark.py \
    --config <relative/absolute path>/<paramfile>.yaml

Refer to the Benchmarking Documentation for more details.

Logging Images

You can save images locally or to a logger such TensorBoard or Weights and Biases by setting the following configuration.

logging:
  logger: [tensorboard, wandb]
  log_graph: false

For more information on logging images, refer to the Logging Documentation


Datasets

anomalib supports MVTec AD (CC BY-NC-SA 4.0) and BeanTech (CC-BY-SA) for benchmarking and folder for custom dataset training/inference.

MVTec AD dataset is one of the main benchmarks for anomaly detection, and is released under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License (CC BY-NC-SA 4.0).

Image-Level AUC

Model Avg Carpet Grid Leather Tile Wood Bottle Cable Capsule Hazelnut Metal Nut Pill Screw Toothbrush Transistor Zipper
PatchCore Wide ResNet-50 0.980 0.984 0.959 1.000 1.000 0.989 1.000 0.990 0.982 1.000 0.994 0.924 0.960 0.933 1.000 0.982
PatchCore ResNet-18 0.973 0.970 0.947 1.000 0.997 0.997 1.000 0.986 0.965 1.000 0.991 0.916 0.943 0.931 0.996 0.953
CFlow Wide ResNet-50 0.962 0.986 0.962 1.0 0.999 0.993 1.0 0.893 0.945 1.0 0.995 0.924 0.908 0.897 0.943 0.984
PaDiM Wide ResNet-50 0.950 0.995 0.942 1.0 0.974 0.993 0.999 0.878 0.927 0.964 0.989 0.939 0.845 0.942 0.976 0.882
PaDiM ResNet-18 0.891 0.945 0.857 0.982 0.950 0.976 0.994 0.844 0.901 0.750 0.961 0.863 0.759 0.889 0.920 0.780
STFPM Wide ResNet-50 0.876 0.957 0.977 0.981 0.976 0.939 0.987 0.878 0.732 0.995 0.973 0.652 0.825 0.5 0.875 0.899
STFPM ResNet-18 0.893 0.954 0.982 0.989 0.949 0.961 0.979 0.838 0.759 0.999 0.956 0.705 0.835 0.997 0.853 0.645
DFM Wide ResNet-50 0.891 0.978 0.540 0.979 0.977 0.974 0.990 0.891 0.931 0.947 0.839 0.809 0.700 0.911 0.915 0.981
DFM ResNet-18 0.894 0.864 0.558 0.945 0.984 0.946 0.994 0.913 0.871 0.979 0.941 0.838 0.761 0.95 0.911 0.949
DFKDE Wide ResNet-50 0.774 0.708 0.422 0.905 0.959 0.903 0.936 0.746 0.853 0.736 0.687 0.749 0.574 0.697 0.843 0.892
DFKDE ResNet-18 0.762 0.646 0.577 0.669 0.965 0.863 0.951 0.751 0.698 0.806 0.729 0.607 0.694 0.767 0.839 0.866
GANomaly 0.421 0.203 0.404 0.413 0.408 0.744 0.251 0.457 0.682 0.537 0.270 0.472 0.231 0.372 0.440 0.434

Pixel-Level AUC

Model Avg Carpet Grid Leather Tile Wood Bottle Cable Capsule Hazelnut Metal Nut Pill Screw Toothbrush Transistor Zipper
PatchCore Wide ResNet-50 0.980 0.988 0.968 0.991 0.961 0.934 0.984 0.988 0.988 0.987 0.989 0.980 0.989 0.988 0.981 0.983
PatchCore ResNet-18 0.976 0.986 0.955 0.990 0.943 0.933 0.981 0.984 0.986 0.986 0.986 0.974 0.991 0.988 0.974 0.983
CFlow Wide ResNet-50 0.971 0.986 0.968 0.993 0.968 0.924 0.981 0.955 0.988 0.990 0.982 0.983 0.979 0.985 0.897 0.980
PaDiM Wide ResNet-50 0.979 0.991 0.970 0.993 0.955 0.957 0.985 0.970 0.988 0.985 0.982 0.966 0.988 0.991 0.976 0.986
PaDiM ResNet-18 0.968 0.984 0.918 0.994 0.934 0.947 0.983 0.965 0.984 0.978 0.970 0.957 0.978 0.988 0.968 0.979
STFPM Wide ResNet-50 0.903 0.987 0.989 0.980 0.966 0.956 0.966 0.913 0.956 0.974 0.961 0.946 0.988 0.178 0.807 0.980
STFPM ResNet-18 0.951 0.986 0.988 0.991 0.946 0.949 0.971 0.898 0.962 0.981 0.942 0.878 0.983 0.983 0.838 0.972

Image F1 Score

Model Avg Carpet Grid Leather Tile Wood Bottle Cable Capsule Hazelnut Metal Nut Pill Screw Toothbrush Transistor Zipper
PatchCore Wide ResNet-50 0.976 0.971 0.974 1.000 1.000 0.967 1.000 0.968 0.982 1.000 0.984 0.940 0.943 0.938 1.000 0.979
PatchCore ResNet-18 0.970 0.949 0.946 1.000 0.98 0.992 1.000 0.978 0.969 1.000 0.989 0.940 0.932 0.935 0.974 0.967
CFlow Wide ResNet-50 0.944 0.972 0.932 1.0 0.988 0.967 1.0 0.832 0.939 1.0 0.979 0.924 0.971 0.870 0.818 0.967
PaDiM Wide ResNet-50 0.951 0.989 0.930 1.0 0.960 0.983 0.992 0.856 0.982 0.937 0.978 0.946 0.895 0.952 0.914 0.947
PaDiM ResNet-18 0.916 0.930 0.893 0.984 0.934 0.952 0.976 0.858 0.960 0.836 0.974 0.932 0.879 0.923 0.796 0.915
STFPM Wide ResNet-50 0.926 0.973 0.973 0.974 0.965 0.929 0.976 0.853 0.920 0.972 0.974 0.922 0.884 0.833 0.815 0.931
STFPM ResNet-18 0.932 0.961 0.982 0.989 0.930 0.951 0.984 0.819 0.918 0.993 0.973 0.918 0.887 0.984 0.790 0.908
DFM Wide ResNet-50 0.918 0.960 0.844 0.990 0.970 0.959 0.976 0.848 0.944 0.913 0.912 0.919 0.859 0.893 0.815 0.961
DFM ResNet-18 0.919 0.895 0.844 0.926 0.971 0.948 0.977 0.874 0.935 0.957 0.958 0.921 0.874 0.933 0.833 0.943
DFKDE Wide ResNet-50 0.875 0.907 0.844 0.905 0.945 0.914 0.946 0.790 0.914 0.817 0.894 0.922 0.855 0.845 0.722 0.910
DFKDE ResNet-18 0.872 0.864 0.844 0.854 0.960 0.898 0.942 0.793 0.908 0.827 0.894 0.916 0.859 0.853 0.756 0.916
GANomaly 0.834 0.864 0.844 0.852 0.836 0.863 0.863 0.760 0.905 0.777 0.894 0.916 0.853 0.833 0.571 0.881

Reference

If you use this library and love it, use this to cite it 🤗

@misc{anomalib,
      title={Anomalib: A Deep Learning Library for Anomaly Detection},
      author={Samet Akcay and
              Dick Ameln and
              Ashwin Vaidya and
              Barath Lakshmanan and
              Nilesh Ahuja and
              Utku Genc},
      year={2022},
      eprint={2202.08341},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

About

An anomaly detection library comprising state-of-the-art algorithms and features such as experiment management, hyper-parameter optimization, and edge inference.

Resources

License

Code of conduct

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 99.4%
  • Other 0.6%