What it does...
# clone project
git clone https://github.com/mh-amani/symbolic_probing
cd symbolic_probing
# [OPTIONAL] create conda environment
conda create -n symbolic_probing python=3.11
conda activate symbolic_probing
# install pytorch according to instructions
# https://pytorch.org/get-started/
# install requirements
pip install -r requirements.txt
# clone project
git clone https://github.com/mh-amani/symbolic_probing
cd symbolic_probing
# create conda environment and install dependencies
conda env create -f environment.yaml -n symbolic_probing
# activate conda environment
conda activate symbolic_probing
Train model with default configuration
# train on CPU
python src/train.py trainer=cpu
# train on GPU
python src/train.py trainer=gpu
Train model with chosen experiment configuration from configs/experiment/
python src/train.py experiment=experiment_name.yaml
You can override any parameter from command line like this
python src/train.py trainer.max_epochs=20 data.batch_size=64