Skip to content

mehtanayanv/IFSL_MTL_testing

Repository files navigation

MTL + IFSL

This project is based on the official code base of the paper Meta Transfer Learning for Few-Shot Learning. IFSL implementations are added in models folder. The folder pretrain contains pre-saved class-wise feature means used for class-wise adjustment. The folder configs contains the running configurations.

Dependencies

Recommended version:

  • Python 3.7.6
  • PyTorch 1.4.0

Preparation

Once the pre-trained model and datasets are downloaded, modify the miniImageNet, tieredImageNet, CUB dataset location in main.py. Additionally, change param.init_weights in each configuration to where you store the pre-trained model.

Running Experiments

Meta Training:

python main.py --config=mini_5_resnet_baseline --gpu=0	 # MTL resnet miniImageNet 5 shot on GPU0
python main.py --config=mini_5_resnet_d --gpu=0	 # MTL+IFSL resnet miniImageNet 5 shot on GPU0
python main.py --config=mini_5_wrn_d --gpu=0,1,2	 # MTL+IFSL WRN miniImageNet 5 shot; 3GPUs are needed

Meta Testing:

python main.py --config=mini_5_resnet_baseline --gpu=0 --phase=meta_eval
python main.py --config=mini_5_resnet_baseline --gpu=0 --phase=meta_eval --cross=True # Domain generalization experiment miniImageNet->CUB

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages