Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Gradio example #158

Open
wants to merge 4 commits into
base: main
Choose a base branch
from
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
144 changes: 144 additions & 0 deletions examples/gradio/demo_gradio.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,144 @@
import gradio as gr
import torch
from viscy.light.engine import VSUNet
from huggingface_hub import hf_hub_download
from numpy.typing import ArrayLike
import numpy as np
from skimage import exposure


class VSGradio:
def __init__(self, model_config, model_ckpt_path):
self.model_config = model_config
self.model_ckpt_path = model_ckpt_path
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.model = None
self.load_model()

def load_model(self):
# Load the model checkpoint and move it to the correct device (GPU or CPU)
self.model = VSUNet.load_from_checkpoint(
self.model_ckpt_path,
architecture="UNeXt2_2D",
model_config=self.model_config,
)
self.model.to(self.device) # Move the model to the correct device (GPU/CPU)
self.model.eval()

def normalize_fov(self, input: ArrayLike):
"Normalizing the fov with zero mean and unit variance"
mean = np.mean(input)
std = np.std(input)
return (input - mean) / std

def predict(self, inp):
# Normalize the input and convert to tensor
inp = self.normalize_fov(inp)
inp = torch.from_numpy(np.array(inp).astype(np.float32))

# Prepare the input dictionary and move input to the correct device (GPU or CPU)
test_dict = dict(
index=None,
source=inp.unsqueeze(0).unsqueeze(0).unsqueeze(0).to(self.device),
)

# Run model inference
with torch.inference_mode():
self.model.on_predict_start() # Necessary preprocessing for the model
pred = (
self.model.predict_step(test_dict, 0, 0).cpu().numpy()
) # Move output back to CPU for post-processing

# Post-process the model output and rescale intensity
nuc_pred = pred[0, 0, 0]
mem_pred = pred[0, 1, 0]
nuc_pred = exposure.rescale_intensity(nuc_pred, out_range=(0, 1))
mem_pred = exposure.rescale_intensity(mem_pred, out_range=(0, 1))

return nuc_pred, mem_pred


# Load the custom CSS from the file
def load_css(file_path):
with open(file_path, "r") as file:
return file.read()


# %%
if __name__ == "__main__":
# Download the model checkpoint from Hugging Face
model_ckpt_path = hf_hub_download(
repo_id="compmicro-czb/VSCyto2D", filename="epoch=399-step=23200.ckpt"
)

# Model configuration
model_config = {
"in_channels": 1,
"out_channels": 2,
"encoder_blocks": [3, 3, 9, 3],
"dims": [96, 192, 384, 768],
"decoder_conv_blocks": 2,
"stem_kernel_size": [1, 2, 2],
"in_stack_depth": 1,
"pretraining": False,
}

# Initialize the Gradio app using Blocks
with gr.Blocks(css=load_css("style.css")) as demo:
# Title and description
gr.HTML(
"<div class='title-block'>Image Translation (Virtual Staining) of cellular landmark organelles</div>"
)
# Improved description block with better formatting
gr.HTML(
"""
<div class='description-block'>
<p><b>Model:</b> VSCyto2D</p>
<p>
<b>Input:</b> label-free image (e.g., QPI or phase contrast) <br>
<b>Output:</b> two virtually stained channels: one for the <b>nucleus</b> and one for the <b>cell membrane</b>.
</p>
<p>
Check out our preprint:
<a href='https://www.biorxiv.org/content/10.1101/2024.05.31.596901' target='_blank'><i>Liu et al.,Robust virtual staining of landmark organelles</i></a>
</p>
</div>
"""
)

vsgradio = VSGradio(model_config, model_ckpt_path)

# Layout for input and output images
with gr.Row():
input_image = gr.Image(type="numpy", image_mode="L", label="Upload Image")
with gr.Column():
output_nucleus = gr.Image(type="numpy", label="VS Nucleus")
output_membrane = gr.Image(type="numpy", label="VS Membrane")

# Button to trigger prediction
submit_button = gr.Button("Submit")

# Define what happens when the button is clicked
submit_button.click(
vsgradio.predict,
inputs=input_image,
outputs=[output_nucleus, output_membrane],
)

# Example images and article
gr.Examples(
examples=["examples/a549.png", "examples/hek.png"], inputs=input_image
)

# Article or footer information
gr.HTML(
"""
<div class='article-block'>
<p> Model trained primarily on HEK293T, BJ5, and A549 cells. For best results, use quantitative phase images (QPI) or Zernike phase contrast.</p>
<p> For training, inference and evaluation of the model refer to the <a href='https://github.com/mehta-lab/VisCy/tree/main/examples/virtual_staining/dlmbl_exercise' target='_blank'>GitHub repository</a>.</p>
</div>
"""
)

# Launch the Gradio app
demo.launch()
Loading