Experimental implementations of Planning Algorithms by Steven LaValle.
git clone [email protected]:mech0ctopus/planning-algorithms.git
## C++
cd planning-algorithms/modules/cpp
mkdir build && cd build
cmake ..
make
## Python
cd planning-algorithms/modules/python3
# Install in editable mode (don't forget the period at the end)
pip3 install -e .
## Run all tests
cd planning-algorithms
./run_tests.sh
## C++
cd planning-algorithms/modules/cpp/build
./TestPrimitives
## Python
cd planning-algorithms/modules/python3
nosetests3 .
cd planning-algorithms/modules/python3/examples
python grid2d.py
python grid3d.py
python five_state.py
python optimal_grid2d.py
python optimal_grid3d.py
python optimal_five_state.py
- Update unit tests for ForwardLabelCorrecting
- Optimal Planning with Forward Value Iteration
- Implement:
- A-Star
- IterativeDeepening
- Define a better
SearchProblem
interface - Mark Initial/Goal States as VISITED in bidirectional search
- Create/Implement more examples
- Determine a path forward for C++ work
- Identify a better design pattern to use for constructing Forward/Backward versions
of the same search algo. (Factory?)
- Should Forward, Backward, and Bidirectional search be consolidated into a Unified interface?
- Add plot results to problem class
- Raise exception if search fails (instead of Return code)
- Add logic to
ForwardSearch
for checking if a state isalive
ordead
per p.33