Skip to content

mbunse/mlcomops

Repository files navigation

ComMLOps

PDF Version of the presentation

Requirements

Setup

After checkout, first create and activate the conda environment:

git clone https://github.com/mbunse/mlcomops.git
conda env create -f environment.yml
conda activate mlops

On Linux systems, adjust the permissions for the mounted volumes:

chmod -R o+w docker-compose/

Now, in order for the DVC files to be tracked, comment out the lowest highlighted section of the [.gitignore].

Deploy required components

docker-compose build
docker-compose up

Create a bucket titanic in Minio.

Initialize DVC

dvc init -f
dvc remote add -f -d minio s3://titanic/dvcrepo
dvc remote modify minio endpointurl http://localhost:9000
dvc remote modify --local minio access_key_id minio-access-key
dvc remote modify --local minio secret_access_key minio-secret-key

Create dvc pipeline

Unignore DVC related files in .gitignore and comment out everything below

# DVC created during exercises
# ---- comment out starting from here when using dvc -----------

Titanic dataset from OpenML

Load data as dvc Stage create and run:

dvc run -n load_data --force -o ../data/interim/train_df.pkl -o ../data/interim/test_df.pkl -o ../data/interim/outlier_df.pkl -d load_data.pct.py -w notebooks python load_data.pct.py

Train model:

dvc run -n train --force -d ../data/interim/train_df.pkl -d train.pct.py -M ../models/score.json -o ../models/model.pkl -o ../models/feat_names.json -w notebooks python train.pct.py

Train Outlier Detector

dvc run -n outlier_detector --force -d ../data/interim/train_df.pkl -d ../data/interim/test_df.pkl -d ../models/feat_names.json -d ../models/model.pkl -d ../data/interim/outlier_df.pkl -o ../models/outlier_detector.pkl -w notebooks python outlier_detector.pct.py

Prepare Explainer

dvc run -n outlier_model --force -w notebooks -d ../data/interim/train_df.pkl -d ../data/interim/test_df.pkl -d ../models/feat_names.json -d ../models/model.pkl -d ../data/interim/outlier_df.pkl -o ../models/explainer.pkl python prepare_explainer.pct.py

Drift Detector

dvc run -n drift_model --force -w notebooks -d ../data/interim/train_df.pkl -d ../data/interim/test_df.pkl -d ../data/interim/outlier_df.pkl -d ../models/model.pkl -d ../models/feat_names.json -o ../models/drift_detector.pkl python drift_detector.pct.py

Push data to Minio bucket

dvc push

Start the API:

python app.py

Find the documentation site for the API at http://127.0.0.1:8080/docs

Create API

While the Model API is running, run the following:

openapi-python-client generate --url http://127.0.0.1:8080/openapi.json

Shut down the API (Ctrl + C).

Start setup from Prometheus, Grafana and Model API.

Prerequisite:

  • local Docker installation.
  • run docker-compose up to have the needed infrastructure available
docker build -t modelapi --build-arg AWS_ACCESS_KEY_ID=minio-access-key --build-arg AWS_SECRET_ACCESS_KEY=minio-secret-key --network="host" . 

Then restart the infrastructure containers and start the model API container:

chmod o+x docker-compose/modelapi/data
docker-compose -f docker-compose.yml -f docker-compose.modelapi.yml up

API: http://localhost:8080/docs

Test the API with

(cd notebooks && python call_api.pct.py)

Monitoring

Dashboard Inspired by Jeremy Jordan A simple solution for monitoring ML systems.

References:

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published