Skip to content

mbilab/predrnn_pp_radar_return

 
 

Repository files navigation

PredRNN++ for Radar Return

Environment

  • Python 3.6.15
  • Pytorch 1.10.1

Data

Data path is /home/tintin/predrnn_model/predrnn_pp_radar_return/radar_image

  • Type : Video sequences, each consisting of 6 frames. Each frame is a gray scale image(64*64 pixels) of radar return.
  • Input : the first 4 frames of a sequence.
  • Output : the 5th frame of a sequence.
  • In/Output Shape : [batch_size,seq_lengh,channel,height,width]

Training

  • Parameter
    • batch_size : 32
    • EPOCHS : 1000
    • lr : 0.001

Run main.py for training the model,

$ python main.py

After training, check ./result/ directory to get input and output images. To get detailed process in every epoch, run tensorboard.

tensorboard --logdir tensorboard-mse_radar --bind_all

The path for the trained model is /home/tintin/predrnn_model/predrnn_pp_radar_return/best_model_state_mse_radar.bin

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%