Skip to content

Commit

Permalink
Reran notebook for cleaner output cells.
Browse files Browse the repository at this point in the history
  • Loading branch information
mdbloice committed Mar 23, 2018
1 parent a24b09a commit cc9946f
Showing 1 changed file with 24 additions and 17 deletions.
41 changes: 24 additions & 17 deletions notebooks/Augmentor_Keras.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -177,7 +177,7 @@
"\n",
"The directory `0` contains all the images corresponding to the 0 class.\n",
"\n",
"To do this, we instantiate a pipeline object in the `mnist` parent directory:"
"To get the data, we can use `wget` (this may not work under Windows):"
]
},
{
Expand All @@ -189,28 +189,35 @@
"name": "stdout",
"output_type": "stream",
"text": [
"--2018-03-23 14:59:00-- https://rawgit.com/myleott/mnist_png/master/mnist_png.tar.gz\n",
"Resolving rawgit.com (rawgit.com)... 104.18.63.176, 104.18.62.176, 2400:cb00:2048:1::6812:3eb0, ...\n",
"Connecting to rawgit.com (rawgit.com)|104.18.63.176|:443... connected.\n",
"--2018-03-23 15:15:37-- https://rawgit.com/myleott/mnist_png/master/mnist_png.tar.gz\n",
"Resolving rawgit.com (rawgit.com)... 104.18.62.176, 104.18.63.176, 2400:cb00:2048:1::6812:3eb0, ...\n",
"Connecting to rawgit.com (rawgit.com)|104.18.62.176|:443... connected.\n",
"HTTP request sent, awaiting response... 301 Moved Permanently\n",
"Location: https://raw.githubusercontent.com/myleott/mnist_png/master/mnist_png.tar.gz [following]\n",
"--2018-03-23 14:59:01-- https://raw.githubusercontent.com/myleott/mnist_png/master/mnist_png.tar.gz\n",
"--2018-03-23 15:15:37-- https://raw.githubusercontent.com/myleott/mnist_png/master/mnist_png.tar.gz\n",
"Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 151.101.112.133\n",
"Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|151.101.112.133|:443... connected.\n",
"HTTP request sent, awaiting response... 200 OK\n",
"Length: 15683414 (15M) [application/octet-stream]\n",
"Saving to: ‘mnist_png.tar.gz’\n",
"\n",
"100%[======================================>] 15,683,414 8.98MB/s in 1.7s \n",
"100%[======================================>] 15,683,414 9.06MB/s in 1.7s \n",
"\n",
"2018-03-23 14:59:03 (8.98 MB/s) - ‘mnist_png.tar.gz’ saved [15683414/15683414]\n",
"2018-03-23 15:15:38 (9.06 MB/s) - ‘mnist_png.tar.gz’ saved [15683414/15683414]\n",
"\n"
]
}
],
"source": [
"!wget https://rawgit.com/myleott/mnist_png/master/mnist_png.tar.gz\n",
"!tar -xf mnist_png.tar.gz "
"!tar -xf mnist_png.tar.gz"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"After the MNIST data has downloaded, we can instantiate a `Pipeline` object in the `training` directory to add the images to the current pipeline:"
]
},
{
Expand Down Expand Up @@ -349,7 +356,7 @@
"name": "stdout",
"output_type": "stream",
"text": [
"[0 1 0 0 0 0 0 0 0 0]\n"
"[0 0 0 0 0 1 0 0 0 0]\n"
]
}
],
Expand All @@ -361,7 +368,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"Or preview the images using Matplotlib (the image should be a 1, according to the label information above):"
"Or preview the images using Matplotlib (the image should be a 5, according to the label information above):"
]
},
{
Expand All @@ -371,9 +378,9 @@
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAP8AAAD8CAYAAAC4nHJkAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAADCdJREFUeJzt3V+IXOd5x/HvsysJjJILu9oK4cjd\nNJiCCVQpiyjIlJQ0wTEFOTcmuggqGJSLGBrIRUQKri9NaRICroOVWo5SUieFxFgXpo0rCiZQgtfG\nteQ4rR2jEMmytMKBWBj0Z/fpxR6Hjb17ZjVzZs7Iz/cDw86c98yeh8P+9p0z7znnjcxEUj0zfRcg\nqR+GXyrK8EtFGX6pKMMvFWX4paIMv1SU4ZeKMvxSUVsmubEdO3bk/Pz8JDcplXL69GkuXrwYm1l3\npPBHxF3At4BZ4J8z86G29efn51lcXBxlk5JaLCwsbHrdoT/2R8Qs8E/AZ4E7gAMRccewv0/SZI1y\nzL8XeC0zX8/MK8APgP3dlCVp3EYJ/63Ar9e8PtMs+z0RcSgiFiNicWlpaYTNSerS2L/tz8wjmbmQ\nmQtzc3Pj3pykTRol/GeB3Wtef6RZJukGMEr4nwNuj4iPRsQ24PPA8W7KkjRuQw/1Zea1iLgf+A9W\nh/qOZubLnVUmaaxGGufPzKeBpzuqRdIEeXqvVJThl4oy/FJRhl8qyvBLRRl+qSjDLxVl+KWiDL9U\nlOGXijL8UlGGXyrK8EtFTfTW3brxZGZr+8rKSmv77Oxsl+WoQ/b8UlGGXyrK8EtFGX6pKMMvFWX4\npaIMv1SU4/zFXblypbX94Ycfbm1//PHHW9tPnjx53TVpMuz5paIMv1SU4ZeKMvxSUYZfKsrwS0UZ\nfqmokcb5I+I08DawDFzLzIUuitLkvPPOO63tjz76aGv7oPMENL26OMnnLzPzYge/R9IE+bFfKmrU\n8Cfwk4h4PiIOdVGQpMkY9WP/nZl5NiL+EHgmIn6Rmc+uXaH5p3AI4Lbbbhtxc5K6MlLPn5lnm58X\ngCeBveuscyQzFzJzYW5ubpTNSerQ0OGPiO0R8eF3nwOfAU51VZik8RrlY/9O4MmIePf3/Gtm/nsn\nVUkau6HDn5mvA3/aYS3qweXLl1vb33jjjdb2HTt2tLa33fe/6TjUE4f6pKIMv1SU4ZeKMvxSUYZf\nKsrwS0V56+7iBl3Se+nSpdZ2h/puXPb8UlGGXyrK8EtFGX6pKMMvFWX4paIMv1SU4/zFzc7OjvT+\nQbfuXllZ2bBtZsa+p0/ufakowy8VZfilogy/VJThl4oy/FJRhl8qynH+D7i26+lh9HH+5eXlkbav\n/tjzS0UZfqkowy8VZfilogy/VJThl4oy/FJRA8f5I+Io8NfAhcz8eLPsFuCHwDxwGrg3M38zvjI1\nrEH3xh91nP/q1aut7W3X86tfm+n5vwvc9Z5lh4ETmXk7cKJ5LekGMjD8mfks8NZ7Fu8HjjXPjwH3\ndFyXpDEb9ph/Z2aea56/CezsqB5JEzLyF365evL2hidwR8ShiFiMiMWlpaVRNyepI8OG/3xE7AJo\nfl7YaMXMPJKZC5m5MDc3N+TmJHVt2PAfBw42zw8CT3VTjqRJGRj+iHgC+G/gTyLiTETcBzwEfDoi\nXgX+qnkt6QYycJw/Mw9s0PSpjmtRD8Y9zu/1/NPLM/ykogy/VJThl4oy/FJRhl8qyvBLRXnr7g+4\nQZfUPvLIIyP9fi/pvXHZ80tFGX6pKMMvFWX4paIMv1SU4ZeKMvxSUY7zf8ANunX3li3tfwIzM+39\nw7Vr11rbHeefXvb8UlGGXyrK8EtFGX6pKMMvFWX4paIMv1SU4/wfcIPG+bdt2zbS+5eXl0dqV3/s\n+aWiDL9UlOGXijL8UlGGXyrK8EtFGX6pqIHhj4ijEXEhIk6tWfZgRJyNiBebx93jLVPjsmXLltbH\nzMxM6yMzWx8rKysbPtSvzfT83wXuWmf5NzNzT/N4utuyJI3bwPBn5rPAWxOoRdIEjXLMf39EvNQc\nFtzcWUWSJmLY8H8b+BiwBzgHfH2jFSPiUEQsRsTi0tLSkJuT1LWhwp+Z5zNzOTNXgO8Ae1vWPZKZ\nC5m5MDc3N2ydkjo2VPgjYteal58DTm20rqTpNPCS3oh4AvgksCMizgB/D3wyIvYACZwGvjjGGiWN\nwcDwZ+aBdRY/NoZa1INB9+0fdD3/IF7PP708w08qyvBLRRl+qSjDLxVl+KWiDL9UlLfuLm7r1q0j\nvX/fvn2t7du3bx/p92t87Pmlogy/VJThl4oy/FJRhl8qyvBLRRl+qSjH+YsbNM6fma3tu3fvbm2f\nnZ297po0Gfb8UlGGXyrK8EtFGX6pKMMvFWX4paIMv1SU4/zFjXo9/9WrV1vbnYp7etnzS0UZfqko\nwy8VZfilogy/VJThl4oy/FJRA8f5I2I38D1gJ5DAkcz8VkTcAvwQmAdOA/dm5m/GV6rGYdAU3YNc\nvny5tX3Q/QDUn830/NeAr2TmHcCfA1+KiDuAw8CJzLwdONG8lnSDGBj+zDyXmS80z98GXgFuBfYD\nx5rVjgH3jKtISd27rmP+iJgHPgH8DNiZmeeapjdZPSyQdIPYdPgj4kPAj4AvZ+Zv17bl6oHdugd3\nEXEoIhYjYnFpaWmkYiV1Z1Phj4itrAb/+5n542bx+YjY1bTvAi6s997MPJKZC5m5MDc310XNkjow\nMPwREcBjwCuZ+Y01TceBg83zg8BT3ZcnaVw2M86zD/gCcDIiXmyWfQ14CPi3iLgP+BVw73hK1DgN\nuqR30K23l5eXW9sd6pteA8OfmT8FYoPmT3VbjqRJ8Qw/qSjDLxVl+KWiDL9UlOGXijL8UlHeuru4\nmZn2//+r53htbNCtuR3nn172/FJRhl8qyvBLRRl+qSjDLxVl+KWiDL9UlOP8xe3fv7+1/fDh9psy\n33TTTa3tg+4HoP7Y80tFGX6pKMMvFWX4paIMv1SU4ZeKMvxSUY7zFzdoiu4HHnhgQpVo0uz5paIM\nv1SU4ZeKMvxSUYZfKsrwS0UZfqmogeGPiN0R8V8R8fOIeDki/rZZ/mBEnI2IF5vH3eMvV1JXNnOS\nzzXgK5n5QkR8GHg+Ip5p2r6Zmf84vvIkjcvA8GfmOeBc8/ztiHgFuHXchUkar+s65o+IeeATwM+a\nRfdHxEsRcTQibt7gPYciYjEiFpeWlkYqVlJ3Nh3+iPgQ8CPgy5n5W+DbwMeAPax+Mvj6eu/LzCOZ\nuZCZC3Nzcx2ULKkLmwp/RGxlNfjfz8wfA2Tm+cxczswV4DvA3vGVKalrm/m2P4DHgFcy8xtrlu9a\ns9rngFPdlydpXDbzbf8+4AvAyYh4sVn2NeBAROwBEjgNfHEsFUoai8182/9TYL1J2p/uvhxJk+IZ\nflJRhl8qyvBLRRl+qSjDLxVl+KWiDL9UlOGXijL8UlGGXyrK8EtFGX6pKMMvFWX4paIiMye3sYgl\n4FdrFu0ALk6sgOszrbVNa11gbcPqsrY/ysxN3S9vouF/38YjFjNzobcCWkxrbdNaF1jbsPqqzY/9\nUlGGXyqq7/Af6Xn7baa1tmmtC6xtWL3U1usxv6T+9N3zS+pJL+GPiLsi4n8j4rWIONxHDRuJiNMR\ncbKZeXix51qORsSFiDi1ZtktEfFMRLza/Fx3mrSeapuKmZtbZpbudd9N24zXE//YHxGzwP8BnwbO\nAM8BBzLz5xMtZAMRcRpYyMzex4Qj4i+AS8D3MvPjzbJ/AN7KzIeaf5w3Z+ZXp6S2B4FLfc/c3Ewo\ns2vtzNLAPcDf0OO+a6nrXnrYb330/HuB1zLz9cy8AvwA2N9DHVMvM58F3nrP4v3Aseb5MVb/eCZu\ng9qmQmaey8wXmudvA+/OLN3rvmupqxd9hP9W4NdrXp9huqb8TuAnEfF8RBzqu5h17GymTQd4E9jZ\nZzHrGDhz8yS9Z2bpqdl3w8x43TW/8Hu/OzPzz4DPAl9qPt5OpVw9Zpum4ZpNzdw8KevMLP07fe67\nYWe87lof4T8L7F7z+iPNsqmQmWebnxeAJ5m+2YfPvztJavPzQs/1/M40zdy83szSTMG+m6YZr/sI\n/3PA7RHx0YjYBnweON5DHe8TEdubL2KIiO3AZ5i+2YePAweb5weBp3qs5fdMy8zNG80sTc/7bupm\nvM7MiT+Au1n9xv+XwN/1UcMGdf0x8D/N4+W+awOeYPVj4FVWvxu5D/gD4ATwKvCfwC1TVNu/ACeB\nl1gN2q6earuT1Y/0LwEvNo+7+953LXX1st88w08qyi/8pKIMv1SU4ZeKMvxSUYZfKsrwS0UZfqko\nwy8V9f/yOA4RKrfeiwAAAABJRU5ErkJggg==\n",
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAP8AAAD8CAYAAAC4nHJkAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAADfBJREFUeJzt3X+sVPWZx/HPAxRQgYhlFsHCXra5\nrhqSpZsJ2VjTtGgbq02wGkkxEhrNXqI12Sb9wx/7x6oxUZuWhkTFUCUFZW03aY0YTQtLNhIS09zB\nsF6surhwayFcuFeRAiHpKs/+cY/mVu58zzBzZs5cnvcrubkz5zlnzsPAh3PmnDPna+4uAPFMKrsB\nAOUg/EBQhB8IivADQRF+ICjCDwRF+IGgCD8QFOEHgprSyZXNmTPHe3p6OrlKIJTBwUGNjIxYI/O2\nFH4zu17SOkmTJT3j7o+l5u/p6VGtVmtllQASqtVqw/M2vdtvZpMlPSnp25KukrTSzK5q9vUAdFYr\nn/mXSnrP3fe7+18k/VLS8mLaAtBurYT/Mkl/GvP8YDbtr5hZn5nVzKw2PDzcwuoAFKntR/vdfYO7\nV929WqlU2r06AA1qJfyHJC0Y8/xL2TQAE0Ar4e+X1Gtmi8xsqqTvSdpaTFsA2q3pU33u/rGZ3SPp\ndxo91bfR3d8qrDMAbdXSeX53f1XSqwX1AqCDuLwXCIrwA0ERfiAowg8ERfiBoAg/EBThB4Ii/EBQ\nhB8IivADQRF+ICjCDwRF+IGgCD8QFOEHgiL8QFCEHwiK8ANBEX4gKMIPBEX4gaA6OkQ3xvfaa68l\n68uWLUvWt2zZUre2cOHC5LJXX311so7zF1t+ICjCDwRF+IGgCD8QFOEHgiL8QFCEHwiqpfP8ZjYo\n6YSkTyR97O7VIpo63+zbty9Zv/nmm5N1M0vWb7/99rq1Cy64ILnsunXrkvX3338/We/r60vW58+f\nn6yjPEVc5PMNdx8p4HUAdBC7/UBQrYbfJW0zs91mlt7/A9BVWt3tv8bdD5nZ30jabmbvuPvOsTNk\n/yn0SfnXmQPonJa2/O5+KPt9VNKLkpaOM88Gd6+6e7VSqbSyOgAFajr8ZnaRmc389LGkb0naW1Rj\nANqrld3+uZJezE5DTZH07+7+20K6AtB2TYff3fdL+ocCezlvnTp1Klk/fvx4S68/e/bsurWTJ08m\nl807T+/uyfozzzyTrG/fvr1u7corr0wui/biVB8QFOEHgiL8QFCEHwiK8ANBEX4gKG7d3QEvv/xy\nW1//4MGDdWubN29OLnvXXXe1tO6hoaFkfenSsy76/Mzu3buTy15++eVN9YTGsOUHgiL8QFCEHwiK\n8ANBEX4gKMIPBEX4gaA4z98Bzz33XEvLr127NlmfOnVq3dodd9yRXHb69OnJ+lNPPZWs9/f3J+un\nT5+uW8sbHvzAgQPJ+syZM5N1pLHlB4Ii/EBQhB8IivADQRF+ICjCDwRF+IGgOM9fgIGBgWR9ZKS1\nQYzPnDnT9LKTJ09O1letWpWsL1iwIFlfs2ZNsp66X8AHH3yQXDbvGgS0hi0/EBThB4Ii/EBQhB8I\nivADQRF+ICjCDwRleUMwm9lGSd+RdNTdF2fTLpH0K0k9kgYlrXD3Y3krq1arXqvVWmx54sm7//z+\n/ftbev3UEODTpk1r6bUxsVSrVdVqNWtk3ka2/L+QdP3npt0naYe790rakT0HMIHkht/dd0r68HOT\nl0valD3eJOmmgvsC0GbNfuaf6+6Hs8dDkuYW1A+ADmn5gJ+PHjSoe+DAzPrMrGZmteHh4VZXB6Ag\nzYb/iJnNk6Ts99F6M7r7Bnevunu1Uqk0uToARWs2/Fslrc4er5b0UjHtAOiU3PCb2QuSXpf092Z2\n0MzulPSYpG+a2T5J12XPAUwgud/nd/eVdUrXFtwLgA7iCj8gKMIPBEX4gaAIPxAU4QeCIvxAUNy6\nuwPWr1+frK9YsSJZP378eLJ+yy231K1NmdLaX3HeV74feeSRZL23t7dujVtzl4stPxAU4QeCIvxA\nUIQfCIrwA0ERfiAowg8ElXvr7iJFvXV3np07dybry5Yt61AnZ2vg1u7J+q233lq3lndL8/vvvz9Z\n5zqBsxV9624A5yHCDwRF+IGgCD8QFOEHgiL8QFCEHwiK8/wTQH9/f7J+8cUX1609//zzLa374Ycf\nTtYnTWrf9uPYsfSo77NmzWrbuicqzvMDyEX4gaAIPxAU4QeCIvxAUIQfCIrwA0Hlnuc3s42SviPp\nqLsvzqY9KOmfJQ1nsz3g7q/mrYzz/BPP0NBQsv7OO+8k69ddd13T616yZEmy/vjjjyfr114bbxT5\nos/z/0LS9eNM/5m7L8l+coMPoLvkht/dd0r6sAO9AOigVj7z32Nmb5rZRjObXVhHADqi2fCvl/Rl\nSUskHZb003ozmlmfmdXMrDY8PFxvNgAd1lT43f2Iu3/i7mck/VzS0sS8G9y96u7VSqXSbJ8ACtZU\n+M1s3pin35W0t5h2AHRK7vjNZvaCpK9LmmNmByX9m6Svm9kSSS5pUNKaNvYIoA1yw+/uK8eZ/Gwb\nekEXuvTSS5P1vO/U33jjjXVrr7zySnLZPXv2JOt33313sv7uu+8m69FxhR8QFOEHgiL8QFCEHwiK\n8ANBEX4gqNxTfUDKhRdemKz39PS0bd0fffRRsn7gwIG6tUWLFhXdzoTDlh8IivADQRF+ICjCDwRF\n+IGgCD8QFOEHguI8P9rqoYceqlt78sknW3rtGTNmJOvz589v6fXPd2z5gaAIPxAU4QeCIvxAUIQf\nCIrwA0ERfiAozvOjraZPn962154yJf3Pd9q0aW1b9/mALT8QFOEHgiL8QFCEHwiK8ANBEX4gKMIP\nBJV7nt/MFkjaLGmuJJe0wd3Xmdklkn4lqUfSoKQV7n6sfa2iG+XdO//pp5/uUCc4V41s+T+W9CN3\nv0rSP0n6gZldJek+STvcvVfSjuw5gAkiN/zuftjd38gen5D0tqTLJC2XtCmbbZOkm9rVJIDindNn\nfjPrkfQVSb+XNNfdD2elIY1+LAAwQTQcfjObIenXkn7o7n8eW3N31+jxgPGW6zOzmpnVhoeHW2oW\nQHEaCr+ZfUGjwd/i7r/JJh8xs3lZfZ6ko+Mt6+4b3L3q7tVKpVJEzwAKkBt+MzNJz0p6293Xjilt\nlbQ6e7xa0kvFtwegXRr5Su9XJa2SNGBme7JpD0h6TNJ/mNmdkv4oaUV7Wpz4Tpw4kazfdtttyfrr\nr79eZDvn5MyZM8n66Ce++vL+7K0YGRlJ1vfu3Vu3tnjx4qLbmXByw+/uuyRZnfK1xbYDoFO4wg8I\nivADQRF+ICjCDwRF+IGgCD8QFLfu7oChoaFk/dix9Dehr7jiiqbXferUqWR9YGAgWc87jz96DVh7\nrFmzJlm/9957k/WFCxcW2c55hy0/EBThB4Ii/EBQhB8IivADQRF+ICjCDwTFef4O6O3tTdZ37drV\ntnWfPn06Wd+xY0eyvm3btmR90qT09uOJJ55I1lMeffTRZH3WrFlNvzbY8gNhEX4gKMIPBEX4gaAI\nPxAU4QeCIvxAUJb3fe0iVatVr9VqHVsfEE21WlWtVmvoJgts+YGgCD8QFOEHgiL8QFCEHwiK8ANB\nEX4gqNzwm9kCM/svM/uDmb1lZv+STX/QzA6Z2Z7s54b2twugKI3czONjST9y9zfMbKak3Wa2Pav9\nzN1/0r72ALRLbvjd/bCkw9njE2b2tqTL2t0YgPY6p8/8ZtYj6SuSfp9NusfM3jSzjWY2u84yfWZW\nM7Pa8PBwS80CKE7D4TezGZJ+LemH7v5nSeslfVnSEo3uGfx0vOXcfYO7V929WqlUCmgZQBEaCr+Z\nfUGjwd/i7r+RJHc/4u6fuPsZST+XtLR9bQIoWiNH+03Ss5Ledve1Y6bPGzPbdyXtLb49AO3SyNH+\nr0paJWnAzPZk0x6QtNLMlkhySYOS0uMpA+gqjRzt3yVpvO8Hv1p8OwA6hSv8gKAIPxAU4QeCIvxA\nUIQfCIrwA0ERfiAowg8ERfiBoAg/EBThB4Ii/EBQhB8IivADQXV0iG4zG5b0xzGT5kga6VgD56Zb\ne+vWviR6a1aRvf2tuzd0v7yOhv+slZvV3L1aWgMJ3dpbt/Yl0VuzyuqN3X4gKMIPBFV2+DeUvP6U\nbu2tW/uS6K1ZpfRW6md+AOUpe8sPoCSlhN/Mrjezd83sPTO7r4we6jGzQTMbyEYerpXcy0YzO2pm\ne8dMu8TMtpvZvuz3uMOkldRbV4zcnBhZutT3rttGvO74br+ZTZb0P5K+KemgpH5JK939Dx1tpA4z\nG5RUdffSzwmb2dcknZS02d0XZ9N+LOlDd38s+49ztrvf2yW9PSjpZNkjN2cDyswbO7K0pJskfV8l\nvneJvlaohPetjC3/Uknvuft+d/+LpF9KWl5CH13P3XdK+vBzk5dL2pQ93qTRfzwdV6e3ruDuh939\njezxCUmfjixd6nuX6KsUZYT/Mkl/GvP8oLpryG+XtM3MdptZX9nNjGNuNmy6JA1JmltmM+PIHbm5\nkz43snTXvHfNjHhdNA74ne0ad/9HSd+W9INs97Yr+ehntm46XdPQyM2dMs7I0p8p871rdsTropUR\n/kOSFox5/qVsWldw90PZ76OSXlT3jT585NNBUrPfR0vu5zPdNHLzeCNLqwveu24a8bqM8PdL6jWz\nRWY2VdL3JG0toY+zmNlF2YEYmdlFkr6l7ht9eKuk1dnj1ZJeKrGXv9ItIzfXG1laJb93XTfitbt3\n/EfSDRo94v+/kv61jB7q9PV3kv47+3mr7N4kvaDR3cD/0+ixkTslfVHSDkn7JP2npEu6qLfnJA1I\nelOjQZtXUm/XaHSX/k1Je7KfG8p+7xJ9lfK+cYUfEBQH/ICgCD8QFOEHgiL8QFCEHwiK8ANBEX4g\nKMIPBPX/WkNh2s7INOEAAAAASUVORK5CYII=\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x7f4f5b2f8550>"
"<matplotlib.figure.Figure at 0x7ff6e6ffa550>"
]
},
"metadata": {},
Expand Down Expand Up @@ -405,15 +412,15 @@
"output_type": "stream",
"text": [
"Epoch 1/5\n",
"468/468 [==============================] - 37s 79ms/step - loss: 0.4748 - acc: 0.8508\n",
"468/468 [==============================] - 30s 65ms/step - loss: 0.4860 - acc: 0.8478\n",
"Epoch 2/5\n",
"468/468 [==============================] - 28s 61ms/step - loss: 0.1966 - acc: 0.9409\n",
"468/468 [==============================] - 29s 63ms/step - loss: 0.2026 - acc: 0.9392\n",
"Epoch 3/5\n",
"468/468 [==============================] - 28s 61ms/step - loss: 0.1589 - acc: 0.9523\n",
"468/468 [==============================] - 29s 61ms/step - loss: 0.1611 - acc: 0.9523\n",
"Epoch 4/5\n",
"468/468 [==============================] - 27s 59ms/step - loss: 0.1386 - acc: 0.9586\n",
"468/468 [==============================] - 28s 60ms/step - loss: 0.1405 - acc: 0.9582\n",
"Epoch 5/5\n",
"468/468 [==============================] - 27s 59ms/step - loss: 0.1210 - acc: 0.9640\n"
"468/468 [==============================] - 28s 59ms/step - loss: 0.1203 - acc: 0.9645\n"
]
}
],
Expand Down

0 comments on commit cc9946f

Please sign in to comment.