Skip to content

mayankkushal/movie_recommender_system

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 
 
 

Repository files navigation

Movie Recommender System

Recommender systems can be classified into 3 types:

  • Simple recommenders: offer generalized recommendations to every user, based on movie popularity and/or genre. The basic idea behind this system is that movies that are more popular and critically acclaimed will have a higher probability of being liked by the average audience. IMDB Top 250 is an example of this system.
  • Content-based recommenders: suggest similar items based on a particular item. This system uses item metadata, such as genre, director, description, actors, etc. for movies, to make these recommendations. The general idea behind these recommender systems is that if a person liked a particular item, he or she will also like an item that is similar to it.
  • Collaborative filtering engines: these systems try to predict the rating or preference that a user would give an item-based on past ratings and preferences of other users. Collaborative filters do not require item metadata like its content-based counterparts.

I have attempted to implement Simple and Content-based recommender system.

About

Content-based recommender system for movies

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages