Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Added customized function (a little ugly) #101

Open
wants to merge 15 commits into
base: master
Choose a base branch
from

Conversation

ingted
Copy link

@ingted ingted commented Feb 26, 2022

For supporting code like the following:

#r @"src\Symbolics\bin\Debug\netstandard2.0\MathNet.Symbolics.dll"
#r @"nuget:MathNet.Numerics"
#r @"nuget:FsUnit"
#r @"nuget:FParsec"
#r @"nuget:MathNet.Numerics.FSharp"
#load @"src\Symbolics.Tests\Global.fs"

open MathNet.Numerics
open MathNet.Symbolics
open Global
open Operators
open VariableSets.Alphabet
type Expr = SymbolicExpression

let symV = Symbol "v"
let symW = Symbol "w"
let symX = Symbol "x"
let symY = Symbol "y"
let symZ = Symbol "z"


open Definition
define "test" ([symV; symW], (v + w)*2)
SymbolicExpression(Infix.parseOrThrow("2^test(x, 2 * x)")).Evaluate(dict[ "x", FloatingPoint.Real 2.0; ])

Result:

val it : FloatingPoint = Real 4096.0

Code:

SymbolicExpression(cFun("test", [x + (fromInt32 10); (fromDouble 100.0)])*2).Evaluate(dict[ "x", FloatingPoint.Real 9.0; ])

Result:

val it : FloatingPoint = Real 476.0

Math.NET Symbolics
Math.NET Symbolics (With Matrix/Vector/Customized Function supported)

2022-03-12 Now there is a private repo which supports DiffSharp Tensor within Math.NET Symbolics. (very rough/early stage)
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

what is it?

Copy link
Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I add small interesting functions to support Vector, Matrix, Tensor values.

The code would look like this:

open System
open MathNet.Numerics.LinearAlgebra
open MathNet.Symbolics
open Definition
open Operators
open VariableSets.Alphabet

let V = FloatingPoint.RealVector <| vector[1.0;2.0;3.0]

let M = FloatingPoint.RealMatrix <|
        matrix [[3.0; 0.0; 0.0]
                [1.0; 2.0; 0.0]
                [0.0; 1.0; 4.0]]

let symbols2 = dict[ "a", V; "m", M ]


type A = {
    trivial: bool
}


[<EntryPoint>]
let main argv =
    let a0 = SymbolicExpression(Infix.parseOrThrow("a * 2")).Evaluate(symbols2)
    printfn "%A" a0.RealVectorValue
    let a1 = SymbolicExpression(Infix.parseOrThrow("a + 1")).Evaluate(symbols2)
    printfn "%A" a1.RealVectorValue
    let a2 = SymbolicExpression(Infix.parseOrThrow("mat_by_row(a, a)")).Evaluate(symbols2)
    printfn "%A" a2.RealMatrixValue
    let a3 = SymbolicExpression(Infix.parseOrThrow("mat_by_col(a, a)")).Evaluate(symbols2)
    printfn "%A" a3.RealMatrixValue
    let a4 = SymbolicExpression(Infix.parseOrThrow("mat_multiply(m, mat_by_col(a, vec(1.0,2.0,3.0), a), a)")).Evaluate(symbols2)
    printfn "%A" a4

    cFun ("mat_by_row", []) |> ignore

    let symV = Symbol "v"
    let symW = Symbol "w"
    let syml = dict[ "x", FloatingPoint.Real 9.0; ]
    let _ = define "t0" ([symV; symW], (v + w))
    printfn "t0: %A" <| SymbolicExpression(cFun("t0", [x; x])).Evaluate(syml)
    let _ = define "t1" ([symV; symW], Infix.parseOrThrow("t0(v, w)"))
    printfn "2 * t1(x, t1(x, x)) / t1(2 * x, x) * 4: %A" <| SymbolicExpression.Parse("2 * t1(x, t1(x, x)) / t1(2 * x, x) * 4").Evaluate(syml)
    let _ = define "t2" ([symV; symW], Infix.parseOrThrow("2 * t0(v, w) / 3"))
    printfn "2 * t2(x, x) / 3 + t2(x, x * 2): %A" <| SymbolicExpression.Parse("2 * t2(x, x) / 3 + t2(x, x * 2)").Evaluate(syml)
    printfn "t1(x, 2 * t0(x,x)): %A" <| SymbolicExpression(cFun("t1", [x; 2 * cFun("t0", [x; x])])).Evaluate(syml)
    printfn "t1(x, 2 * t1(x,x)): %A" <| SymbolicExpression(cFun("t1", [x; 2 * cFun("t1", [x; x])])).Evaluate(syml)
    printfn "t0(x, t0(x, x) * 2): %A" <| SymbolicExpression(cFun("t0", [x; cFun("t0", [x; x]) * 2])).Evaluate(syml)
    printfn "t0(x, t1(x, x) * 2): %A" <| SymbolicExpression(cFun("t0", [x; cFun("t1", [x; x]) * 2])).Evaluate(syml)

    let a5 = SymbolicExpression(Infix.parseOrThrow("2 * mat_multiply(m, mat_by_col(a, vec(1.0,2.0,3.0), a), a)")).Evaluate(symbols2)
    printfn "%A" a5

    let a6 = SymbolicExpression.Parse("2 * htensor(lo(lo(lo(vec(1,2,3), vec(4,5,6)), lo(vec(7,8,9), vec(10,11,12)))))").Evaluate(symbols2)
    printfn "%A" a6

If you are interested about it, I can add you...
(Why private? Because it is just like a toy and still a lot of works to do... )

Copy link
Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Output:

seq [2.0; 4.0; 6.0]
seq [2.0; 3.0; 4.0]
DenseMatrix 2x3-Double
1  2  3
1  2  3

DenseMatrix 3x2-Double
1  1
2  2
3  3

RealVector (seq [18.0; 30.0; 84.0])
t0: Real 18.0
2 * t1(x, t1(x, x)) / t1(2 * x, x) * 4: Real 8.0
2 * t2(x, x) / 3 + t2(x, x * 2): Real 26.0
t1(x, 2 * t0(x,x)): Real 45.0
t1(x, 2 * t1(x,x)): Real 45.0
t0(x, t0(x, x) * 2): Real 45.0
t0(x, t1(x, x) * 2): Real 45.0
RealVector (seq [36.0; 60.0; 168.0])
twl.Length: 1
twl.Length: 2
twl.Length: 2
v.Count: 3
v.Count: 3
twl.Length: 2
v.Count: 3
v.Count: 3
WTensor
  (DSTensor
     tensor([[[[ 2.,  4.,  6.],
          [ 8., 10., 12.]],

         [[14., 16., 18.],
          [20., 22., 24.]]]]))

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

(Why private? Because it is just like a toy and still a lot of works to do... )

Then, it should not be mentioned in ReadMe. Feel free to create issue though.

@ingted
Copy link
Author

ingted commented Mar 19, 2022 via email

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging this pull request may close these issues.

2 participants