A Python package for working with world cities, countries, regions database. This package provides easy access to a comprehensive database of world locations.
- Easy-to-use interface for querying geographical data
- Built-in database downloader and updater
- Support for searching cities, countries, and regions
- Geolocation features (nearby cities search)
- SQLite database with Peewee ORM
- Django integration with custom model fields
- Robust date handling and data validation
- Snake case field names with backward compatibility
Basic installation:
pip install aigeodb
from aigeodb import DatabaseManager
# Initialize the database manager
db = DatabaseManager()
# Search for cities
cities = db.search_cities("Moscow", limit=5)
for city in cities:
print(f"{city.name}, {city.country_code}")
print(f"Location: ({city.latitude}, {city.longitude})")
print(f"State: {city.state_code}")
# Get country information
country = db.get_country_info("US")
print(f"{country['name']} ({country['iso2']})")
print(f"Capital: {country['capital']}")
print(f"Currency: {country['currency']} ({country['currency_symbol']})")
# Find nearby cities
cities = db.get_nearby_cities(
latitude=40.7128,
longitude=-74.0060,
radius_km=100,
limit=10
)
for city in cities:
print(f"{city.name}, {city.state_code} ({city.latitude}, {city.longitude})")
All models use snake_case field names with aliases for backward compatibility:
# City model fields
city = cities[0]
print(f"ID: {city.id}")
print(f"Name: {city.name}")
print(f"State ID: {city.state_id}") # aliased as 'state' in database
print(f"State Code: {city.state_code}")
print(f"Country ID: {city.country_id}") # aliased as 'country' in database
print(f"Country Code: {city.country_code}")
print(f"Location: ({city.latitude}, {city.longitude})")
print(f"Created: {city.created_at}")
print(f"Updated: {city.updated_at}")
print(f"Active: {city.flag}")
print(f"Wiki Data: {city.wiki_data_id}") # aliased as 'wikiDataId' in database
# Country model fields
country = db.get_country_by_code("US")
print(f"Basic Info: {country.name} ({country.iso2}, {country.iso3})")
print(f"Codes: {country.numeric_code}, {country.phonecode}")
print(f"Location: {country.region}, {country.subregion}")
print(f"Currency: {country.currency} ({country.currency_symbol})")
print(f"Emoji: {country.emoji} ({country.emoji_u})") # emoji_u aliased as 'emojiU'
# DatabaseManager methods
db = DatabaseManager()
# Search cities by name
cities = db.search_cities("Moscow", limit=5)
# Get country information
country = db.get_country_info("US")
# Calculate distance between two points
new_york = (40.7128, -74.0060) # (latitude, longitude)
london = (51.5074, -0.1278)
distance = db.calculate_distance(new_york, london)
print(f"Distance between cities: {distance:.1f}km")
# Find nearby cities
cities = db.get_nearby_cities(
latitude=40.7128,
longitude=-74.0060,
radius_km=100,
limit=10
)
# Get cities by country
cities = db.get_cities_by_country("US")
# Get states/regions by country
states = db.get_states_by_country("US")
# Get database statistics
stats = db.get_statistics()
The package handles dates robustly:
- Invalid dates ('0000-00-00 00:00:00') are automatically converted to
None
- All date fields (
created_at
,updated_at
) are optional - Dates are stored in UTC format
- Dates are returned as Python
datetime
objects
Example:
city = db.get_city_by_id(1)
if city.created_at:
print(f"Created: {city.created_at.strftime('%Y-%m-%d %H:%M:%S')}")
if city.updated_at:
print(f"Last Updated: {city.updated_at.strftime('%Y-%m-%d %H:%M:%S')}")
The package uses geopy for precise distance calculations using the geodesic formula. Coordinates are passed as tuples of (latitude, longitude).
Example distances:
# Some major city coordinates
new_york = (40.7128, -74.0060)
london = (51.5074, -0.1278)
paris = (48.8566, 2.3522)
tokyo = (35.6762, 139.6503)
seoul = (37.5665, 126.9780)
# Calculate distances
print(f"New York to London: {db.calculate_distance(new_york, london):.1f}km") # ~5,570km
print(f"Paris to Tokyo: {db.calculate_distance(paris, tokyo):.1f}km") # ~9,713km
print(f"Tokyo to Seoul: {db.calculate_distance(tokyo, seoul):.1f}km") # ~1,160km
The package includes:
- Countries (250 records)
- Regions (6 records)
- Subregions (22 records)
- States/Regions/Municipalities (5,038 records)
- Cities/Towns/Districts (151,072 records)
AigeoDB provides Django model fields with Select2-powered autocomplete support for cities and countries. The integration includes custom widgets with dark mode support and AJAX search functionality.
- Add to INSTALLED_APPS:
INSTALLED_APPS = [
...
'aigeodb.django',
]
- Add URLs to your project's urls.py:
from django.urls import path, include
urlpatterns = [
...
path('aigeodb/', include('aigeodb.django.urls')),
]
- Make sure you have static files configured:
STATIC_URL = '/static/'
STATIC_ROOT = BASE_DIR / 'staticfiles'
STATICFILES_DIRS = [
BASE_DIR / 'static',
]
- Run collectstatic:
python manage.py collectstatic
from django.db import models
from aigeodb.django import CityField, CountryField
class Location(models.Model):
city = CityField()
country = CountryField()
# Fields can be optional
departure_city = CityField(null=True, blank=True)
def __str__(self):
return f"{self.city.name}, {self.country.name}"
The fields work automatically in Django admin with Select2 widgets:
from django.contrib import admin
from aigeodb.django import AutocompleteFieldsMixin
@admin.register(Location)
class LocationAdmin(AutocompleteFieldsMixin, admin.ModelAdmin):
list_display = ('city', 'country')
search_fields = ('city__name', 'country__name')
- Built-in Select2 integration with AJAX search
- Automatic dark/light theme support
- Efficient data loading with caching
- Built-in data validation
- Responsive design
- Support for Django admin inlines
- Thread-safe database access
The fields use custom Select2 widgets that can be customized:
from django.db import models
from aigeodb.django import CityField, CountryField
class Location(models.Model):
city = CityField(
widget_attrs={
'data-placeholder': 'Search for a city...',
'data-minimum-input-length': '3',
'class': 'custom-select'
}
)
country = CountryField(
widget_attrs={
'data-placeholder': 'Select a country',
'style': 'width: 100%'
}
)
The package provides two AJAX endpoints:
-
/aigeodb/search-cities/
- Parameters:
term
: Search query (min 2 characters)page
: Page number for pagination
- Returns:
{ "results": [ { "id": "123", "text": "New York, United States" } ], "pagination": { "more": false } }
- Parameters:
-
/aigeodb/search-countries/
- Parameters:
term
: Search query (min 2 characters)page
: Page number for pagination
- Returns:
{ "results": [ { "id": "US", "text": "United States" } ], "pagination": { "more": false } }
- Parameters:
The package includes:
aigeodb/js/autocomplete-init.js
- Select2 initializationaigeodb/css/autocomplete-theme.css
- Theme styles with dark mode
These files are automatically included when using AutocompleteFieldsMixin
.
Developed by Unrealos Inc. - We create innovative SaaS and PaaS solutions powered by AI for business. Our expertise includes:
- AI-powered business solutions
- SaaS platforms
- PaaS infrastructure
- Custom enterprise software
MIT License - see the LICENSE file for details.
- Data source: countries-states-cities-database
- Developed by Unrealos Inc.
The package provides methods to find cities and countries by coordinates:
# Get city by coordinates
city = db.get_city_by_coordinates(
latitude=40.7128,
longitude=-74.0060
)
if city:
print(f"Nearest city: {city.name}, {city.country_code}")
# Get country by coordinates
country = db.get_country_by_coordinates(
latitude=40.7128,
longitude=-74.0060
)
if country:
print(f"Country at location: {country.name} ({country.iso2})")
The package uses geopy for precise distance calculations using the geodesic formula. Coordinates are passed as tuples of (latitude, longitude).
Example distances:
# Some major city coordinates
new_york = (40.7128, -74.0060)
london = (51.5074, -0.1278)
paris = (48.8566, 2.3522)
tokyo = (35.6762, 139.6503)
seoul = (37.5665, 126.9780)
# Calculate distances
print(f"New York to London: {db.calculate_distance(new_york, london):.1f}km") # ~5,570km
print(f"Paris to Tokyo: {db.calculate_distance(paris, tokyo):.1f}km") # ~9,713km
print(f"Tokyo to Seoul: {db.calculate_distance(tokyo, seoul):.1f}km") # ~1,160km