Skip to content

(MICCAI2019) Unified attentional generative adversarial network for brain tumor segmentation from multimodal unpaired images

Notifications You must be signed in to change notification settings

mangoyuan/UAGAN

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Unified Attentional Generative Adversarial Network for Brain Tumor Segmentation From Multimodal Unpaired Images

Installation

  • Run on python3.6, Pytorch0.4 and CUDA 8.0.
  • Install tensorboardX.
  • Clone this repo.

Data Preparation

  1. Download the Task01_BrainTumour dataset from Medical Segmentation Decathlon.
  2. Pre-process, save as png files and split train-test list.
cd process

python to_png.py --brain_dir /path/to/Task01_BrainTumour \
--save_dir /path/to/png_dataset \
--crop 200 --resize 128

python split.py --brain_dir /path/to/png_dataset \
--save_dir .

Train

All model will stop at max_epoch and make predictions at the last epoch.

cd ..
./uagan.sh

Acknowledgement

Part of the code is revised from

Citation

@inproceedings{yuan2019unified,
  title={Unified attentional generative adversarial network for brain tumor segmentation from multimodal unpaired images},
  author={Yuan, Wenguang and Wei, Jia and Wang, Jiabing and Ma, Qianli and Tasdizen, Tolga},
  booktitle={International Conference on Medical Image Computing and Computer-Assisted Intervention},
  pages={229--237},
  year={2019},
  organization={Springer}
}

About

(MICCAI2019) Unified attentional generative adversarial network for brain tumor segmentation from multimodal unpaired images

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published