Unified Attentional Generative Adversarial Network for Brain Tumor Segmentation From Multimodal Unpaired Images
- Run on python3.6, Pytorch0.4 and CUDA 8.0.
- Install tensorboardX.
- Clone this repo.
- Download the
Task01_BrainTumour
dataset from Medical Segmentation Decathlon. - Pre-process, save as
png
files and split train-test list.
cd process
python to_png.py --brain_dir /path/to/Task01_BrainTumour \
--save_dir /path/to/png_dataset \
--crop 200 --resize 128
python split.py --brain_dir /path/to/png_dataset \
--save_dir .
All model will stop at max_epoch
and make predictions at the last epoch.
cd ..
./uagan.sh
Part of the code is revised from
@inproceedings{yuan2019unified,
title={Unified attentional generative adversarial network for brain tumor segmentation from multimodal unpaired images},
author={Yuan, Wenguang and Wei, Jia and Wang, Jiabing and Ma, Qianli and Tasdizen, Tolga},
booktitle={International Conference on Medical Image Computing and Computer-Assisted Intervention},
pages={229--237},
year={2019},
organization={Springer}
}