-
Notifications
You must be signed in to change notification settings - Fork 4
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
bd01139
commit c5407fb
Showing
1 changed file
with
194 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,194 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 1, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"from utils.one_hot_encoder import HotEncoder\n", | ||
"import numpy as np\n", | ||
"import torch\n", | ||
"import skimage\n", | ||
"import matplotlib.pyplot as plt\n", | ||
"import skimage" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 2, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"Image= skimage.io.imread(\"/home/fatjuicyboi/Downloads/kitti/training/semantic_rgb/000051_10.png\")\n", | ||
"encoder= HotEncoder(dir= '/home/fatjuicyboi/Downloads/kitti/training/semantic_rgb', extension=\"png\")\n" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 3, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"text/plain": [ | ||
"<matplotlib.image.AxesImage at 0x7fd21271a490>" | ||
] | ||
}, | ||
"execution_count": 3, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
}, | ||
{ | ||
"data": { | ||
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAacAAACWCAYAAAB6vkckAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAcS0lEQVR4nO2dfbAeVX3HPz/yQiTBJCiGSxIBk7QMrSjUKqjTSQ2EyKQJFZvhRctrcyPRYtIYQzOTXpnSQWQSsQZyUyAFDYHUKIkZWyJXmI7TgogviLzIvSp5aRJAAwi0EvT0j9197j57d59nd599ObvP7zPzzLN79uzuOXt2z3d/5/zOWTHGoCiKoig2cUTZCVAURVGUICpOiqIoinWoOCmKoijWoeKkKIqiWIeKk6IoimIdKk6KoiiKdeQiTiIyT0SeFpFBEVmVxzkURVGU+iJZj3MSkVHAz4Czgb3AI8CFxpgnMj2RoiiKUlvysJzeCwwaY35ujHkduBtYmMN5FEVRlJoyOodjTgX2+Nb3Au8LRhKRxcBigFFjxv3J+GOn5ZCUdEwa/TovvjG27GSUwsxxu1Pt9/pRr6c+5+5fz0y9b5G8/D+Dkdve/va3h4anuY8mjW5/LXfvji6nNx9fjeup1BPv/o1z7//vi8/x+qsvSdi2PMQpFsaYjcBGgIlTZ5kzlnyxrKSM4Pwp+9h2cGrZySiFnSdflWq/sYt2Mxhdd0dy1V07OT7VGYtn15r5kdtWr16d67mD9+PJge1e2uZeuzPXdChKO86fsg8Yec+G8dCGT0duy0Oc9gHTfevT3DCl5lx1105uvii6Ag+LXyVaVfzbDsY/jvfwjjxG+hciFSWlbuTR5/QIMEtEThKRscAFwI4czqNYSFzBqZowZcm2g1MbQuQtd6ulrihRZC5Oxpg3gE8C9wFPAluNMT/N+jyKvbQSnoGB/q4WJkVR4pHLOCdjzLeMMX9gjJlhjLkuj3ModhMmQAMD/SWkRFGKpVXfpBIfnSFCaZDWGcIj2N/kFygVJqUbUGHKjtK89ZR64gmUJ0wqSko3oKKUPSpOSi54IqXipChKGlSclFyZM6cXUJFS6olaTPmhfU6KoigWMGvC1cyacHXZybAGtZyUTEgzO4SidCutRGjWhKt55pWbCkyNnag4dTmdeuh5eA4QSWaIUJRuQy2j+GiznpIpV921UwfZKkoIKkzJUMupi8jKSmp17PlP3QwMW1LnT9nXcIpQlG5FhSk5Kk5KpoQJ4Cb11FO6mDTC5O3TzX1P2qynKIqiWIeKk5I7l03W6RWV+Hgu1XVpCuvE+qnTdUiKNuv5GL4JVpaajrzw+oPy7HsKY9OhfD/Epyh54x9sm/TbWVmIS/AY3dDcp5ZTBGE3VB3e6Hatmc/YRbsbP0WxGVueNb8gJZkVIq/023Jd8sQay8l/sYt8K4g7GC4Yz9aBcmVPp+JZZx5RX31VlLjY8qx5ArVrzXzOn7Kv7Qciu0FA8sQKcTryiD04X3O3j3biBd1hYitK3thcmTel7dqdQOuXLpvzUhWsEKcgYQVrswBUTaRe3/r2spOgdDGtWiRsI6p534Z+6arVO0mxUpyisFm0bElHK4oQpaCzRV7OEP7zBJsSFXvxnuGkolT0sx8nfbMmXM2u3FIQH1uaPbOmUuIEsH75EEvXzmisR/VVRb1VBNuKn3nlpsy8aep4g3TKZZOvU289pVLYbs2FYVv9M2dOL3NixDtva/S2yoiT/4ZZv3wIoEmkgnGSkKVABY+rKEp1Kvyk6ezvH579pLe33Gm6bBOoTqmMOHl4grR++dAIKyqMqAIr0juw05smK9Ebu2i3Ff1NWXgUjqW8vrOo9PsrKo8ojy7Pi/H8KfsiK7Wk42m6jawr46oIaLdQOXHyWLp2RkOgvPUo2nUc5jkWwd/xm0YkozpkOxEocCpSm2duaFcxByeaLZKwMS9zr93JtoMjXeeD60Gx2nZwai1FqKiKPguBUlHKnoGB/pEvZt/90oh4u3c/FHmMtuIkIrcD84HnjDF/7IYdA9wDnAj8ElhkjDkkIgLcBJwLvAZcaoz5QZzMpCFoRfnDwvC8bIq8GTs5V94fJNt0aHWuAjX/qZtDxznVqTIO5iXMUvKuQbtxMVlTt2aeKMK8/+Lmuy7CZEs5h45rDBGlOMSxnP4V+DJwpy9sFTBgjLleRFa5658FPgzMcn/vA25x/3MlaVNfWQQri2g31XTHS0MagWq1j3rO2UErr7iimrGr8hJYZcoSpejr7XOxTylKHm2nLzLG/Cfw60DwQuAOd/kO4Dxf+J3G4SFgkoj0dJTCBIRZUrYRZ1BvWtL25aSZykg98OzCP7VWu/uo0ym4/PsHl/1xyiR4PTp9EbSVsvJQhCim7XOaYozZ7y4fAKa4y1OBPb54e92w/QQQkcXAYoAJk+MnI4no2GpF2fRQtPMw8ltCraYiUoupemTpqGPTPR1FFdKYhrKab9tZx7PmOXX1M/8RXgfPmjfED5/4beT+HTtEGGOMiJgU+20ENgK8bfq42PsnFZs4fVFVJstR4mMX7U7UH1SmIKkYOnRa4bar2LIYLKsUQIwmNE8swFdf+Pf74N8mPm2c5lv/eZOQVpwOikiPMWa/22z3nBu+D5juizeNdpNQdUg78Ql69YV4+9YCW0arK8WQpQi0Eqii+46qjG0vwK1EofFSiy/NrQQuRLjyvi/SitMO4BLgevd/uy/8kyJyN44jxEu+5r9cCWvu824Wf1+UomSF3428SLKuFOIOYVDqx6x5Q5HNbk24wpXWCkpDHFfyLcBs4K0ishf4BxxR2ioiVwDPAovc6N/CcSMfxHElvyyHNEfiDYKM6kfxRGrZgtYXeGAg23RVmW5xR07D3Gt3smvNfHatmR86ADeIf8Dt+W78XWvml+5aH2waVmGqHp2IRhyBKlKUPNqKkzHmwohNI6ZOMsYYYGmniUqC12wXFq4kJ+tBv3kQ5pjhfyEpsrL3zrXtYHO4f2yTf9kTND82CBSoKHXCY6/ekNmxTh2/csRQjWV7x2R2/DBiW1AFUtkZIvwEBaqdMK3b0Xr7qeMzSVYhnDp+ZaYPRhRhnwloNbvF8LZknxaIO61UcECrDZW7H78o+Sn7Y5BKNVk37XDuAhVFGVYT1ESclPLJYvBw2NeGwZ7R71kQZjklEdYyrZv1y/N7s166VvuDoyhKlMKsp7KECWIMwq0KVWzG8/d9LVsw1LYvrE4kFTNbm5y8Pqckn6NPa+WVdQ3WL5+RqzDF4dTxKzl1fPkf+CuDddMOs27a4ULO5RejMoUJ1HIqlYGBfpYt6G00M7ZrbqwjeU7XFBQMr18qyyZAf59TmEC1E60kaSnSrbtsMbKFoprNbaJsUfKohDi1u0GG3yqcD9v53zLKaqdthT8/M2cCDLF+ufMP6a3ANPuF7eO9oeb9UKapaJN+ItvfN5V3v5R3Lu+Dlv5/P7vWzG9469mECpIdFO0MYSuVEKdWtDN3k3YkdmvTQRi2i7xH9IS6K0PCsuvD8vqO4riRZ0GeVpMKUzRZOyMktca859DmZzAPKiFOl02+DiYPryctpLw9XbIy/fPsN1u2YKhWzYZRzhPt4gXDOhGqoBt5lKXkxOn8cxk6W0N5dKtAlEklHSKSdg7afEMNDg7/bGXZ3jEjLMq6tMN3Utl7jhDezwtLmw4VHjvwpjsLGz+Zt3OCttwMUwnLKYgtltPwzdvb9MnwsHN5cZ14jiW46VDmSQrF8wJctmCImTNbW2jOg3fdiLCi0loGaQYZR4mQY02FO0F4X+/FvQc2HVrNrjXzm8ojLC22DYLudpyXtXT7rl8+RH//yBdsm1+gy6KSlpNH3LeMogu+qa+mjYv4uh0zCm1uS9N02A0PThqrxd/X1O7TI7MmXB17JvWopshut6yqbq2nndtz2d4xXfEMBqm0OEHrinPTodWlFmqScUtFCVSasVRFjbGoEnOv3cm2g1MbfUlRnoB+QWlYTrT/WGOrL9kq5ZL38+DVW1UWpSxeJCovTlCNNwuvTynpF2f9pBmImMXAXtuvbVZkIQRJRaWVJavCZB9VqGvqgrV9Tv5KddNAP4+9esNw2N7wB7roT4dHTTrr3bzrdsxoyodXEW065Hj3pWm3TvpGktQi8zs/dPr2U2bnbloPymi39Fbecsmbl22av1HdyJsJvjDkKUYqdNFYK07+in3OnF4eS1DJegVeRAWwdO0MTh2/kmV7R1aEjsePP27+6VE657zd9/rW/ryx9Efc27Te4E+TDw4uAu/5iXpBUVEqFr/oqSi1x1pxCtJN884p5XLVrbc2lm++8sq28X/3yCNwSp4pSo4+L0rVsVqcgs1iXlhV8N6UunF+rjrQ399Pb+82X8iuzAdKt7Nu0hL27ChKlbBanOqMDrZTIN+XrXbHXrp2qBZNe+uXx/u+6dK16xMdV5/RclFxspDo8RDOWJos397f+anPjAy8Pdl+P/nnL2SWnqIJWrWnjl/JhsPGWfFdhw2HPwJ8BIADZx8YcZznF3yl7bn8lag3RMoLa1dxhlXASStbO5kH0NQ3G86rdPqR7bgi5mHh3LxdhdXilHWzhK1vQiMEYvmS+PFvH17PWiSC52kVL3hubyR8UfivwTs/9ZlE1yWYT7/49M1+P9ActmJPSPmsX8Lmlds5dsfH4ULC/1uwfvnSJrGJU5F6+ySpdIOC5n3kr3gLal7B50tOb++r9Pdb5FbZZVgtTmHYNIFpo1K7PcIC8Qhs7x3T25hdYPW4T8C/vNIUvbU0NWMuN03pCauI01pHSYg6d5bHb9BGKOOEeWKzn/2wJVlabpy+IVSgLr5hobPgGmKb2d60vW/2ywB87NY+X+iwC6cnYH0Pvjl2WpJaA0ERLB77RclPb69jsTkvAf6X5d7Av0MVP3pqK1aI05veNiW8An3WqQAGBvoxlxvOctcjRcGttGJvDyNOnBAWBATGzzdHHd20XXI0KaLSfdazS7j/hA25ndc7d5YC1aoM2pWPudyENr9lxY3Tw69lULRW7FnCZrazYs8Sbpy+ISBMMDi4nJkzhwUqiTBVj2oJU7ewbMEQAwNOnWST45YV4hTF/SdsQG6XpvV29Pb2Qi9sONw+bpigfHPU0ZHbwnht7gqYA6+560ftujHWfh47/mbCyMCrRgZlQVECBbRsmmwlLI1muRbs35Lc2ikKT7RW7FkybEm5rNizhAP0jdjHs6iS0Df75dRCtn75UjYcPqo5cPnXUx0rHtUXJcdCbdsxVin83SZz5vQ2BMoW2oqTiEwH7gSmAAbYaIy5SUSOAe4BTgR+CSwyxhwSEQFuAs7FqbMvNcb8IJ/kO3hC4gmLFxa0WJIKTxrCxEZubw6XjJvUbGTD4Q2pmg7f+anP5GrxKA7+a3zct4/L8UzVF6YssaXfO6w/P+lkB3kTx3J6A/g7Y8wPRORo4FER+TZwKTBgjLleRFYBq4DPAh8GZrm/9wG3uP9tSWrJBMUHnLEpf/G738Q5XUtCLZoAXjNjkcSxCKtA3QXI3y/lt6COO+cAB+4bFoOvXtmX6vhZNv8tGZOX1VQ3YVpL3aynIDb16bcVJ2PMfmC/u/wbEXkSmAosBGa70e4AHsQRp4XAncYYAzwkIpNEpMc9TiiTXvh9QdaM4zywg2jhibJqPnbyeSPCDtw3UpzC4gGNTvKvPnVv+HYfVRSgoNj0PdgX+fnyJWOc69Y3uy/vZFnJceccYPNKz1ki8rEojL7Z76fvwf/K+Kh1E6ZsiWy67oJWlbgk6nMSkROB04CHgSk+wTmA0+wHjnDt8e221w1regpFZDGwGGDikRPZuDVcnHoudCyn8O2vsLFlXHd7xLHDz9cDjKxswzrAPxayf1RHeYOzh88Rdp7cuLX5fFH5jNrmT3PUfh59D/bFSpIXr64iFeXV58fb7t03cfufsnacSCNQnpv9iPBaO3W0tp7aOlLFFJ/gcYoaS5jWavI7oWVFbHESkQnANuDTxpiXna4lB2OMERETuXMIxpiN4GjH6ePeZaIeYs8dt91DnjRuJsc4Z0lTE81x5xxgRYJzxD5PBngd8d75WuUzbFvQLTqKuMIU3KeuAhUXz5vPBoKiEyZaUcKkNBNsSfEs5qgWlujtznqclpdYRHRJJPVSjiILz91Y4iQiY3CEabMxxmugPug114lID/CcG74PmO7bfRpR362OQdDjyTa8Jpok6bz4hoW+Zp1iGBjoz/1aphEmxR7SNu/V21JKRmSzvnXHP6/pxTrp8eOIZByh++ZX/ylyWxxvPQFuA540xvg/+rADuAS43v3f7gv/pIjcjeMI8VKr/iaAA2Oez+StsQen6SnJsYqyXMomqXgWTR2tp1b3VhbXuBN38uhjjrSIgqKlVtNaXplxETBs6fT29rbaoUEW5Z6V9XTWs83r95+wAbKyzDIgjuX0AeDjwE9E5Edu2N/jiNJWEbkCeBZY5G77Fo4b+SCOK/llmaY4Y4JClkbgeuhJLq5bws8PxQhmu4ck6rpEoVbTSOL0OXnxkuLvm0oyTiqtmLUSpDxEsqp0+pIdVv/476HMmvUYHjfaGEt6eaKemdyJ4633XUAiNs8JiW9IOEPjcYePHfEQ29L+XgZVyHvPhT309vZmau3U0XrKuyyTDuBNM+C37TFVmBp0+mIZ1rfbdA+d3dHhQ2nlHBWHvMbJWTtDRJpCTusQUQUxUBQb6VZhmjB0F6/MuKjRAnHxjOyawsNaNWyuo8K8euMK3eGfHY7cZq04FUmYV1oSgfPmTmuHzTeYoijJyOV53qL1hEetxCmLzsY0x7Ddo1BR8qBbrSalGKwQp6y89fJCmwmLoW79TYqipMcKcbIdFZv29M3uU489Rako+7eUP41WkCPKToCiKIqiBFHLSUlNsBmuE+tJm/SUqtH34Jtzcc3PirjdEXEduuIey3/uTlqdVJyUTEkjUCpMilIeWTp0hX1gsxXbD0d/rkXFScmcJAKlwqQo+dDOarF96jYVJyUX2omOipKilEuejl5ZCJ+Kk1I4KkyKUm/iCt+Bg89HblNvPUVRFMU6VJwURVEU61BxUhQlM/pmv2y1e7VSHbTPSVGUzGn63pTOwaekQC0nRVFSEbSQoiwmtaaUNKjlpChKahJ9hTcoZhW3qFRw80UtJ0VRSkErd6UVKk6KopRClS0nFdb8UXFS2uJ9ellRFBWmotA+JyVTwj553ypOJ+h3tqpN3+yXY1lPRYlBlS25OqLipHRMWRNIrtizRAVKUWpK22Y9ERknIt8TkR+LyE9F5HNu+Eki8rCIDIrIPSIy1g0/0l0fdLefmG8WlLJYsWeJ9TMbK3bTzirSJrTuJU6f02+BDxlj3gW8G5gnImcAnwfWGWNmAoeAK9z4VwCH3PB1bjxFyQUVRyUr4gihimVxtG3WM8YY4BV3dYz7M8CHgIvc8DuAPuAWYKG7DPA14MsiIu5xFCVTtFmv+thU4XtpCet/simd3UCsPicRGQU8CswE1gNDwIvGmDfcKHuBqe7yVGAPgDHmDRF5CXgL8ELgmIuBxQATj5zYWS6UrkSFSckLFaLyiSVOxpjfAe8WkUnAN4CTOz2xMWYjsBHg+KOPV6vKQrwmsyivu3Z4n2zevHL7iDBFUZRWJPLWM8a8KCIPAGcCk0RktGs9TQP2udH2AdOBvSIyGpgI/CrDNCs5k3U/Th6CpFaTotSbtuIkIscCh11hehNwNo6TwwPAR4G7gUug8Xq9w13/b3f7d7S/qRpUxblAhUlR6k8cy6kHuMPtdzoC2GqM2SkiTwB3i8g/Aj8EbnPj3wZ8RUQGgV8DF+SQbiVDqiJKoMKkKN1CHG+9x4DTQsJ/Drw3JPz/gL/KJHVKrlRJlBRF6S50hogupIqipBaTonQXKk5dRBVFCVSYFKUbUXHqAqoqSqDCpCjdiopTjamyKIEKk6J0MypONaTqogQqTIrS7ag41Yg6iBKoMCmKouJUC1SUFEWpGypOFaYuoqQoihJExamCFC1KeU/WqhaToihBVJwqRB0tJRUmRVHCUHGqAHUUJVBhUhQlGhUni6mrKIEKk6IorVFxspA6ixKoMCmK0h4VJ4uouyiBCpOiKPFQcbKAbhAlUGFSFCU+Kk4l0i2iBCpMiqIkQ8WpBFSUFEVRWiPGmLLTgIj8Bni67HSUwFuBF8pORAl0Y767Mc+g+e4m0uT5BGPMsWEbbLGcnjbGvKfsRBSNiHxf890ddGOeQfNddjqKJOs8H5HVgRRFURQlK1ScFEVRFOuwRZw2lp2AktB8dw/dmGfQfHcTmebZCocIRVEURfFji+WkKIqiKA1UnBRFURTrKF2cRGSeiDwtIoMisqrs9GSFiEwXkQdE5AkR+amIXO2GHyMi3xaRZ9z/yW64iMiX3OvwmIicXm4OOkNERonID0Vkp7t+kog87ObvHhEZ64Yf6a4PuttPLDPdnSAik0TkayLylIg8KSJn1r28RWSZe38/LiJbRGRcHctaRG4XkedE5HFfWOKyFZFL3PjPiMglZeQlCRH5/oJ7jz8mIt8QkUm+bde4+X5aRM7xhSev540xpf2AUcAQ8A5gLPBj4JQy05Rh3nqA093lo4GfAacANwCr3PBVwOfd5XOBfwcEOAN4uOw8dJj/5cBdwE53fStwgbu8AfiEu3wVsMFdvgC4p+y0d5DnO4Ar3eWxwKQ6lzcwFfgF8CZfGV9ax7IG/gw4HXjcF5aobIFjgJ+7/5Pd5cll5y1FvucCo93lz/vyfYpbhx8JnOTW7aPS1vNlZ/xM4D7f+jXANWUXSE553Q6cjTMTRo8b1oMzABmgH7jQF78Rr2o/YBowAHwI2Ok+pC/4buhGuQP3AWe6y6PdeFJ2HlLkeaJbUUsgvLbl7YrTHreyHe2W9Tl1LWvgxEAlnahsgQuBfl94Uzxbf8F8B7b9JbDZXW6qv73yTlvPl92s593cHnvdsFrhNl+cBjwMTDHG7Hc3HQCmuMt1uhZfBFYCv3fX3wK8aIx5w133562Rb3f7S278qnES8DywyW3OvFVExlPj8jbG7ANuBHYD+3HK7lHqX9YeScu28mUewuU4ViJknO+yxan2iMgEYBvwaWPMy/5txnmNqJUvv4jMB54zxjxadloKZjRO88ctxpjTgFdxmnoa1K283T6WhTjCfDwwHphXaqJKom5lGwcRWQ28AWzO4/hli9M+YLpvfZobVgtEZAyOMG02xnzdDT4oIj3u9h7gOTe8LtfiA8ACEfklcDdO095NwCQR8eZy9OetkW93+0TgV0UmOCP2AnuNMQ+761/DEas6l/dZwC+MMc8bYw4DX8cp/7qXtUfSsq1DmQMgIpcC84GLXWGGjPNdtjg9AsxyvXvG4nSS7ig5TZkgIgLcBjxpjFnr27QD8Lx0LsHpi/LC/9r19DkDeMnXZFAZjDHXGGOmGWNOxCnP7xhjLgYeAD7qRgvm27seH3XjV+4N1BhzANgjIn/oBs0BnqDe5b0bOENEjnLvdy/PtS5rH0nL9j5grohMdq3OuW5YpRCReTjN9guMMa/5Nu0ALnC9Mk8CZgHfI209b0Fn27k4nmxDwOqy05Nhvj6IY+Y/BvzI/Z2L08Y+ADwD3A8c48YXYL17HX4CvKfsPGRwDWYz7K33DvdGHQT+DTjSDR/nrg+6299Rdro7yO+7ge+7ZX4vjkdWrcsb+BzwFPA48BUcT63alTWwBadf7TCOlXxFmrLF6aMZdH+XlZ2vlPkexOlD8uq1Db74q918Pw182BeeuJ7X6YsURVEU6yi7WU9RFEVRRqDipCiKoliHipOiKIpiHSpOiqIoinWoOCmKoijWoeKkKIqiWIeKk6IoimId/w9xXrPMf9PwYwAAAABJRU5ErkJggg==\n", | ||
"text/plain": [ | ||
"<Figure size 432x288 with 1 Axes>" | ||
] | ||
}, | ||
"metadata": { | ||
"needs_background": "light" | ||
}, | ||
"output_type": "display_data" | ||
} | ||
], | ||
"source": [ | ||
"skimage.io.imshow(Image)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 4, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"name": "stderr", | ||
"output_type": "stream", | ||
"text": [ | ||
"Generating Color Pallte to Hot Encode: 100%|██████████| 200/200 [05:27<00:00, 1.63s/it]\n" | ||
] | ||
}, | ||
{ | ||
"data": { | ||
"text/plain": [ | ||
"{(107, 142, 35): 1,\n", | ||
" (70, 130, 180): 2,\n", | ||
" (70, 70, 70): 3,\n", | ||
" (153, 153, 153): 4,\n", | ||
" (0, 0, 0): 5,\n", | ||
" (220, 20, 60): 6,\n", | ||
" (0, 0, 230): 7,\n", | ||
" (119, 11, 32): 8,\n", | ||
" (0, 0, 142): 9,\n", | ||
" (111, 74, 0): 10,\n", | ||
" (220, 220, 0): 11,\n", | ||
" (244, 35, 232): 12,\n", | ||
" (128, 64, 128): 13,\n", | ||
" (152, 251, 152): 14,\n", | ||
" (0, 0, 70): 15,\n", | ||
" (255, 0, 0): 16,\n", | ||
" (230, 150, 140): 17,\n", | ||
" (190, 153, 153): 18,\n", | ||
" (250, 170, 30): 19,\n", | ||
" (250, 170, 160): 20,\n", | ||
" (81, 0, 81): 21,\n", | ||
" (180, 165, 180): 22,\n", | ||
" (102, 102, 156): 23,\n", | ||
" (150, 100, 100): 24,\n", | ||
" (0, 60, 100): 25,\n", | ||
" (0, 80, 100): 26,\n", | ||
" (0, 0, 110): 27,\n", | ||
" (0, 0, 90): 28,\n", | ||
" (150, 120, 90): 29}" | ||
] | ||
}, | ||
"execution_count": 4, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
} | ||
], | ||
"source": [ | ||
"color_dict= encoder.gen_colors()\n", | ||
"color_dict" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 5, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"onehottt= encoder.PerPixelClassMatrix(Image)\n", | ||
"encoded= encoder.HotEncode(onehottt)\n", | ||
"ch= encoder.channelSplit(encoded)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 13, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"name": "stderr", | ||
"output_type": "stream", | ||
"text": [ | ||
"Lossy conversion from float64 to uint8. Range [0, 1]. Convert image to uint8 prior to saving to suppress this warning.\n", | ||
"Lossy conversion from float64 to uint8. Range [0, 1]. Convert image to uint8 prior to saving to suppress this warning.\n", | ||
"Lossy conversion from float64 to uint8. Range [0, 1]. Convert image to uint8 prior to saving to suppress this warning.\n", | ||
"Lossy conversion from float64 to uint8. Range [0, 1]. Convert image to uint8 prior to saving to suppress this warning.\n", | ||
"Lossy conversion from float64 to uint8. Range [0, 1]. Convert image to uint8 prior to saving to suppress this warning.\n", | ||
"Lossy conversion from float64 to uint8. Range [0, 1]. Convert image to uint8 prior to saving to suppress this warning.\n", | ||
"Lossy conversion from float64 to uint8. Range [0, 1]. Convert image to uint8 prior to saving to suppress this warning.\n", | ||
"Lossy conversion from float64 to uint8. Range [0, 1]. Convert image to uint8 prior to saving to suppress this warning.\n", | ||
"Lossy conversion from float64 to uint8. Range [0, 1]. Convert image to uint8 prior to saving to suppress this warning.\n", | ||
"Lossy conversion from float64 to uint8. Range [0, 1]. Convert image to uint8 prior to saving to suppress this warning.\n", | ||
"Lossy conversion from float64 to uint8. Range [0, 1]. Convert image to uint8 prior to saving to suppress this warning.\n", | ||
"Lossy conversion from float64 to uint8. Range [0, 1]. Convert image to uint8 prior to saving to suppress this warning.\n", | ||
"Lossy conversion from float64 to uint8. Range [0, 1]. Convert image to uint8 prior to saving to suppress this warning.\n", | ||
"Lossy conversion from float64 to uint8. Range [0, 1]. Convert image to uint8 prior to saving to suppress this warning.\n", | ||
"Lossy conversion from float64 to uint8. Range [0, 1]. Convert image to uint8 prior to saving to suppress this warning.\n", | ||
"Lossy conversion from float64 to uint8. Range [0, 1]. Convert image to uint8 prior to saving to suppress this warning.\n", | ||
"Lossy conversion from float64 to uint8. Range [0, 1]. Convert image to uint8 prior to saving to suppress this warning.\n", | ||
"Lossy conversion from float64 to uint8. Range [0, 1]. Convert image to uint8 prior to saving to suppress this warning.\n", | ||
"Lossy conversion from float64 to uint8. Range [0, 1]. Convert image to uint8 prior to saving to suppress this warning.\n", | ||
"Lossy conversion from float64 to uint8. Range [0, 1]. Convert image to uint8 prior to saving to suppress this warning.\n", | ||
"Lossy conversion from float64 to uint8. Range [0, 1]. Convert image to uint8 prior to saving to suppress this warning.\n", | ||
"Lossy conversion from float64 to uint8. Range [0, 1]. Convert image to uint8 prior to saving to suppress this warning.\n", | ||
"Lossy conversion from float64 to uint8. Range [0, 1]. Convert image to uint8 prior to saving to suppress this warning.\n", | ||
"Lossy conversion from float64 to uint8. Range [0, 1]. Convert image to uint8 prior to saving to suppress this warning.\n", | ||
"Lossy conversion from float64 to uint8. Range [0, 1]. Convert image to uint8 prior to saving to suppress this warning.\n", | ||
"Lossy conversion from float64 to uint8. Range [0, 1]. Convert image to uint8 prior to saving to suppress this warning.\n", | ||
"Lossy conversion from float64 to uint8. Range [0, 1]. Convert image to uint8 prior to saving to suppress this warning.\n", | ||
"Lossy conversion from float64 to uint8. Range [0, 1]. Convert image to uint8 prior to saving to suppress this warning.\n", | ||
"Lossy conversion from float64 to uint8. Range [0, 1]. Convert image to uint8 prior to saving to suppress this warning.\n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"for _ in range(29):\n", | ||
" skimage.io.imsave(arr= ch[_], fname= str(_)+\".jpeg\")\n" | ||
] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "Python 3", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.7.4" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 2 | ||
} |