- Use PDAL to request pointclouds from The National Map and 3DEP Entwine Server
- Generate DEM grids using PDAL and GDAL-based python modules
- Compute metrics on DEMs
- Perform basic pixel classification using sci-kitlearn
- Example notebooks show analysis of Rio Grande rift normal faults and alluvial fan deposits
** Setup is tested for Windows running Docker & VSCode-Remote Containers
- Docker Desktop installed
- VScode
- VSCode Extensions: (Local) Docker, Dev Containers, WSL (DEV Container) Python, Pylance, isort, Docker, Jupyter
- Dockerfile -- builds a miniconda container for developing in VSCode
- devcontainer -- config files for VSCode Remote Container
- src -- folder containing DEM creation & Analysis Modules, tutorial jupyter_notebooks, test scripts, and testData
- .travis.yml, docker-compose.image.yml, docker-compose.yml -- configuration files for Docker.mini.rgr
- Clone this repo
- Launch Docker Desktop & VSCode
- In VSCode, install extensions (listed above)
- Navigate to repo folder
- Select ><, in Remote options, select 'reopen folder in container'
- Once container is launched, add installed VSCode extensions to the Dev container
- Change Python Interpreter to 'Python 3.8 ('rgr':conda) /opt/conda/bin/python'