-
Notifications
You must be signed in to change notification settings - Fork 34
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
ZhangJiahui
authored and
ZhangJiahui
committed
May 13, 2020
1 parent
51cb94a
commit ffbddcd
Showing
2 changed files
with
261 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -3,3 +3,4 @@ | |
*.pyc | ||
.vscode | ||
pretrained/* | ||
*DS_Store |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,260 @@ | ||
""" | ||
Adapted from: | ||
https://github.com/tynguyen/unsupervisedDeepHomographyRAL2018 | ||
""" | ||
|
||
import numpy as np | ||
import tensorflow as tf | ||
|
||
####################################################### | ||
# Auxiliary matrices used to solve DLT | ||
Aux_M1 = np.array([ | ||
[0, 0, 0, 0, 0, 0, 0, 0], | ||
[1, 0, 0, 0, 0, 0, 0, 0], | ||
[0, 0, 0, 0, 0, 0, 0, 0], | ||
[0, 0, 1, 0, 0, 0, 0, 0], | ||
[0, 0, 0, 0, 0, 0, 0, 0], | ||
[0, 0, 0, 0, 1, 0, 0, 0], | ||
[0, 0, 0, 0, 0, 0, 0, 0], | ||
[0, 0, 0, 0, 0, 0, 1, 0]], dtype=np.float64) | ||
|
||
|
||
Aux_M2 = np.array([ | ||
[0, 0, 0, 0, 0, 0, 0, 0], | ||
[0, 1, 0, 0, 0, 0, 0, 0], | ||
[0, 0, 0, 0, 0, 0, 0, 0], | ||
[0, 0, 0, 1, 0, 0, 0, 0], | ||
[0, 0, 0, 0, 0, 0, 0, 0], | ||
[0, 0, 0, 0, 0, 1, 0, 0], | ||
[0, 0, 0, 0, 0, 0, 0, 0], | ||
[0, 0, 0, 0, 0, 0, 0, 1]], dtype=np.float64) | ||
|
||
|
||
Aux_M3 = np.array([ | ||
[0], | ||
[1], | ||
[0], | ||
[1], | ||
[0], | ||
[1], | ||
[0], | ||
[1]], dtype=np.float64) | ||
|
||
|
||
Aux_M4 = np.array([ | ||
[-1, 0, 0, 0, 0, 0, 0, 0], | ||
[0, 0, 0, 0, 0, 0, 0, 0], | ||
[0, 0, -1, 0, 0, 0, 0, 0], | ||
[0, 0, 0, 0, 0, 0, 0, 0], | ||
[0, 0, 0, 0, -1, 0, 0, 0], | ||
[0, 0, 0, 0, 0, 0, 0, 0], | ||
[0, 0, 0, 0, 0, 0, -1, 0], | ||
[0, 0, 0, 0, 0, 0, 0, 0]], dtype=np.float64) | ||
|
||
|
||
Aux_M5 = np.array([ | ||
[0, -1, 0, 0, 0, 0, 0, 0], | ||
[0, 0, 0, 0, 0, 0, 0, 0], | ||
[0, 0, 0, -1, 0, 0, 0, 0], | ||
[0, 0, 0, 0, 0, 0, 0, 0], | ||
[0, 0, 0, 0, 0, -1, 0, 0], | ||
[0, 0, 0, 0, 0, 0, 0, 0], | ||
[0, 0, 0, 0, 0, 0, 0, -1], | ||
[0, 0, 0, 0, 0, 0, 0, 0]], dtype=np.float64) | ||
|
||
|
||
Aux_M6 = np.array([ | ||
[-1], | ||
[0], | ||
[-1], | ||
[0], | ||
[-1], | ||
[0], | ||
[-1], | ||
[0]], dtype=np.float64) | ||
|
||
|
||
Aux_M71 = np.array([ | ||
[0, 1, 0, 0, 0, 0, 0, 0], | ||
[1, 0, 0, 0, 0, 0, 0, 0], | ||
[0, 0, 0, 1, 0, 0, 0, 0], | ||
[0, 0, 1, 0, 0, 0, 0, 0], | ||
[0, 0, 0, 0, 0, 1, 0, 0], | ||
[0, 0, 0, 0, 1, 0, 0, 0], | ||
[0, 0, 0, 0, 0, 0, 0, 1], | ||
[0, 0, 0, 0, 0, 0, 1, 0]], dtype=np.float64) | ||
|
||
|
||
Aux_M72 = np.array([ | ||
[1, 0, 0, 0, 0, 0, 0, 0], | ||
[-1, 0, 0, 0, 0, 0, 0, 0], | ||
[0, 0, 1, 0, 0, 0, 0, 0], | ||
[0, 0, -1, 0, 0, 0, 0, 0], | ||
[0, 0, 0, 0, 1, 0, 0, 0], | ||
[0, 0, 0, 0, -1, 0, 0, 0], | ||
[0, 0, 0, 0, 0, 0, 1, 0], | ||
[0, 0, 0, 0, 0, 0, -1, 0]], dtype=np.float64) | ||
|
||
|
||
Aux_M8 = np.array([ | ||
[0, 1, 0, 0, 0, 0, 0, 0], | ||
[0, -1, 0, 0, 0, 0, 0, 0], | ||
[0, 0, 0, 1, 0, 0, 0, 0], | ||
[0, 0, 0, -1, 0, 0, 0, 0], | ||
[0, 0, 0, 0, 0, 1, 0, 0], | ||
[0, 0, 0, 0, 0, -1, 0, 0], | ||
[0, 0, 0, 0, 0, 0, 0, 1], | ||
[0, 0, 0, 0, 0, 0, 0, -1]], dtype=np.float64) | ||
|
||
|
||
Aux_Mb = np.array([ | ||
[0, -1, 0, 0, 0, 0, 0, 0], | ||
[1, 0, 0, 0, 0, 0, 0, 0], | ||
[0, 0, 0, -1, 0, 0, 0, 0], | ||
[0, 0, 1, 0, 0, 0, 0, 0], | ||
[0, 0, 0, 0, 0, -1, 0, 0], | ||
[0, 0, 0, 0, 1, 0, 0, 0], | ||
[0, 0, 0, 0, 0, 0, 0, -1], | ||
[0, 0, 0, 0, 0, 0, 1, 0]], dtype=np.float64) | ||
|
||
|
||
def solve_DLT(pred_h4p, training, constrained=True, scale=None): | ||
bs = tf.shape(pred_h4p)[0] | ||
if training: | ||
h = pred_h4p.get_shape()[1].value | ||
w = pred_h4p.get_shape()[2].value | ||
else: | ||
h = tf.shape(pred_h4p)[1] | ||
w = tf.shape(pred_h4p)[2] | ||
|
||
pts_1 = tf.constant([-1, -1, 1, -1, -1, 1, 1, 1], dtype=tf.float32) | ||
pts_1 = tf.reshape(pts_1, (1, 1, 1, 8, 1)) | ||
pts_1 = tf.tile(pts_1, (bs, h, w, 1, 1)) | ||
pts_2 = pred_h4p[..., None] + pts_1 | ||
|
||
# Auxiliary tensors used to create Ax = b equation | ||
M1 = tf.constant(Aux_M1, tf.float32) | ||
M1_tensor = tf.reshape(M1, [1, 1, 1, 8, 8]) | ||
M1_tile = tf.tile(M1_tensor, [bs, h, w, 1, 1]) | ||
|
||
M2 = tf.constant(Aux_M2, tf.float32) | ||
M2_tensor = tf.reshape(M2, [1, 1, 1, 8, 8]) | ||
M2_tile = tf.tile(M2_tensor, [bs, h, w, 1, 1]) | ||
|
||
M3 = tf.constant(Aux_M3, tf.float32) | ||
M3_tensor = tf.reshape(M3, [1, 1, 1, 8, 1]) | ||
M3_tile = tf.tile(M3_tensor, [bs, h, w, 1, 1]) | ||
|
||
M4 = tf.constant(Aux_M4, tf.float32) | ||
M4_tensor = tf.reshape(M4, [1, 1, 1, 8, 8]) | ||
M4_tile = tf.tile(M4_tensor, [bs, h, w, 1, 1]) | ||
|
||
M5 = tf.constant(Aux_M5, tf.float32) | ||
M5_tensor = tf.reshape(M5, [1, 1, 1, 8, 8]) | ||
M5_tile = tf.tile(M5_tensor, [bs, h, w, 1, 1]) | ||
|
||
M6 = tf.constant(Aux_M6, tf.float32) | ||
M6_tensor = tf.reshape(M6, [1, 1, 1, 8, 1]) | ||
M6_tile = tf.tile(M6_tensor, [bs, h, w, 1, 1]) | ||
|
||
M71 = tf.constant(Aux_M71, tf.float32) | ||
M71_tensor = tf.reshape(M71, [1, 1, 1, 8, 8]) | ||
M71_tile = tf.tile(M71_tensor, [bs, h, w, 1, 1]) | ||
|
||
M72 = tf.constant(Aux_M72, tf.float32) | ||
M72_tensor = tf.reshape(M72, [1, 1, 1, 8, 8]) | ||
M72_tile = tf.tile(M72_tensor, [bs, h, w, 1, 1]) | ||
|
||
M8 = tf.constant(Aux_M8, tf.float32) | ||
M8_tensor = tf.reshape(M8, [1, 1, 1, 8, 8]) | ||
M8_tile = tf.tile(M8_tensor, [bs, h, w, 1, 1]) | ||
|
||
Mb = tf.constant(Aux_Mb, tf.float32) | ||
Mb_tensor = tf.reshape(Mb, [1, 1, 1, 8, 8]) | ||
Mb_tile = tf.tile(Mb_tensor, [bs, h, w, 1, 1]) | ||
|
||
# Form the equations Ax = b to compute H | ||
# Form A matrix | ||
A1 = tf.matmul(M1_tile, pts_1) # Column 1 | ||
A2 = tf.matmul(M2_tile, pts_1) # Column 2 | ||
A3 = M3_tile # Column 3 | ||
A4 = tf.matmul(M4_tile, pts_1) # Column 4 | ||
A5 = tf.matmul(M5_tile, pts_1) # Column 5 | ||
A6 = M6_tile # Column 6 | ||
A7 = tf.matmul(M71_tile, pts_2) * tf.matmul(M72_tile, pts_1) # Column 7 | ||
A8 = tf.matmul(M71_tile, pts_2) * tf.matmul(M8_tile, pts_1) # Column 8 | ||
|
||
if constrained: | ||
A_mat = tf.concat([A1, A2, A4, A5, A7, A8], axis=-1) | ||
else: | ||
A_mat = tf.concat([A1, A2, A3, A4, A5, A6, A7, A8], axis=-1) | ||
# Form b matrix | ||
b_mat = tf.matmul(Mb_tile, pts_2) | ||
|
||
# Solve the Ax = b | ||
if constrained: | ||
A_t_mat = tf.matrix_transpose(A_mat) | ||
A_mat = tf.matmul(A_t_mat, A_mat) | ||
b_mat = tf.matmul(A_t_mat, b_mat) | ||
H_6el = tf.matrix_solve(A_mat, b_mat) | ||
H_6el = tf.squeeze(H_6el, axis=-1) | ||
|
||
if scale is not None: | ||
H_4el = H_6el[:, :, :, 0:4] | ||
H_4el = H_4el * scale | ||
H_2el = H_6el[:, :, :, 4:6] | ||
H_6el = tf.concat([H_4el, H_2el], axis=-1) | ||
|
||
h_zeros = tf.zeros([bs, h, w, 1]) | ||
h_ones = tf.ones([bs, h, w, 1]) | ||
h3 = tf.expand_dims(tf.concat([h_zeros, h_zeros, h_ones], axis=-1), axis=-1) | ||
H_6el = tf.reshape(H_6el, [bs, h, w, 3, 2]) # BATCH_SIZE x 3 x 3 | ||
H_mat = tf.concat([H_6el, h3], axis=-1) | ||
else: | ||
H_8el = tf.matrix_solve(A_mat, b_mat) # BATCH_SIZE x 8. | ||
H_8el = tf.squeeze(H_8el, axis=-1) | ||
|
||
if scale is not None: | ||
H_6el = H_8el[:, :, :, 0:6] | ||
H_6el = H_6el * scale | ||
H_2el = H_8el[:, :, :, 6:8] | ||
H_8el = tf.concat([H_6el, H_2el], axis=-1) | ||
|
||
h_ones = tf.ones([bs, h, w, 1]) | ||
H_9el = tf.concat([H_8el, h_ones], -1) | ||
H_mat = tf.reshape(H_9el, [bs, h, w, 3, 3]) # BATCH_SIZE x 3 x 3 | ||
|
||
has_nan = tf.reduce_sum(tf.cast(tf.math.is_nan(H_mat), tf.float32)) | ||
H_mat = tf.cond( | ||
tf.equal(has_nan, 0), | ||
lambda: H_mat, | ||
lambda: tf.tile(tf.reshape(tf.eye(3), [1, 1, 1, 3, 3]), [bs, h, w, 1, 1]) | ||
) | ||
|
||
return H_mat | ||
|
||
|
||
if __name__ == "__main__": | ||
pred_h4p = np.array([0.5, -0.3, 0.15, 0.9, -1, -0.2, 0.5, 1.2]) | ||
pred_h4p = tf.constant(pred_h4p, dtype=tf.float32) | ||
pred_h4p = tf.reshape(pred_h4p, (1, 1, 1, 8)) | ||
H_mat = solve_DLT(pred_h4p, True, False) | ||
|
||
rng = tf.range(-1, 2) | ||
x, y = tf.meshgrid(rng, rng) | ||
x = tf.reshape(x, (-1, )) | ||
y = tf.reshape(y, (-1, )) | ||
xy = tf.reshape(tf.stack([x, y], axis=-1), [1, 1, 1, -1, 2]) | ||
xy = tf.tile(xy, [tf.shape(H_mat)[0], tf.shape( | ||
H_mat)[1], tf.shape(H_mat)[2], 1, 1]) | ||
xy = tf.cast(xy, tf.float32) | ||
ones = tf.ones_like(xy[:, :, :, :, 0])[..., None] | ||
xy_homo = tf.concat([xy, ones], axis=-1) | ||
|
||
pert_xy = tf.matmul(xy_homo, H_mat, transpose_b=True) | ||
homo_scale = tf.expand_dims(pert_xy[:, :, :, :, -1], axis=-1) | ||
pert_xy = pert_xy[:, :, :, :, 0:2] | ||
pert_xy = tf.clip_by_value(tf.math.divide_no_nan(pert_xy, homo_scale), -10., 10.) | ||
|
||
with tf.Session() as sess: | ||
print(sess.run(pert_xy)) |