-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
0 parents
commit 77cf96b
Showing
45 changed files
with
6,119 additions
and
0 deletions.
There are no files selected for viewing
Large diffs are not rendered by default.
Oops, something went wrong.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,21 @@ | ||
MIT License | ||
|
||
Copyright (c) 2024 lxysl | ||
|
||
Permission is hereby granted, free of charge, to any person obtaining a copy | ||
of this software and associated documentation files (the "Software"), to deal | ||
in the Software without restriction, including without limitation the rights | ||
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | ||
copies of the Software, and to permit persons to whom the Software is | ||
furnished to do so, subject to the following conditions: | ||
|
||
The above copyright notice and this permission notice shall be included in all | ||
copies or substantial portions of the Software. | ||
|
||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | ||
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | ||
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | ||
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | ||
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | ||
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | ||
SOFTWARE. |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,308 @@ | ||
import numpy as np | ||
from numpy.testing import assert_array_almost_equal | ||
|
||
|
||
def unbiased_edge(x, y, p_minus, p_plus): | ||
z = (y - (p_minus - p_plus)) * x | ||
return z / (1 - p_minus - p_plus) | ||
|
||
|
||
def unbiased_mean_op(X, y, p_minus, p_plus): | ||
return np.array([unbiased_edge(X[i, :], y[i], p_minus, p_plus) | ||
for i in np.arange(X.shape[0])]).mean(axis=0) | ||
|
||
|
||
def build_uniform_P(size, noise): | ||
""" The noise matrix flips any class to any other with probability | ||
noise / (#class - 1). | ||
""" | ||
|
||
assert(noise >= 0.) and (noise <= 1.) | ||
|
||
P = noise / (size - 1) * np.ones((size, size)) | ||
np.fill_diagonal(P, (1 - noise) * np.ones(size)) | ||
|
||
assert_array_almost_equal(P.sum(axis=1), 1, 1) | ||
return P | ||
|
||
|
||
def build_for_cifar100(size, noise): | ||
""" The noise matrix flips to the "next" class with probability 'noise'. | ||
""" | ||
|
||
assert(noise >= 0.) and (noise <= 1.) | ||
|
||
P = (1. - noise) * np.eye(size) | ||
for i in np.arange(size - 1): | ||
P[i, i+1] = noise | ||
|
||
# adjust last row | ||
P[size-1, 0] = noise | ||
|
||
assert_array_almost_equal(P.sum(axis=1), 1, 1) | ||
return P | ||
|
||
|
||
def row_normalize_P(P, copy=True): | ||
|
||
if copy: | ||
P_norm = P.copy() | ||
else: | ||
P_norm = P | ||
|
||
D = np.sum(P, axis=1) | ||
for i in np.arange(P_norm.shape[0]): | ||
P_norm[i, :] /= D[i] | ||
return P_norm | ||
|
||
|
||
def noisify(y, p_minus, p_plus=None, random_state=0): | ||
""" Flip labels with probability p_minus. | ||
If p_plus is given too, the function flips with asymmetric probability. | ||
""" | ||
|
||
assert np.all(np.abs(y) == 1) | ||
|
||
m = y.shape[0] | ||
new_y = y.copy() | ||
coin = np.random.RandomState(random_state) | ||
|
||
if p_plus is None: | ||
p_plus = p_minus | ||
|
||
# This can be made much faster by tossing all the coins and completely | ||
# avoiding the loop. Although, it is not simple to write the asymmetric | ||
# case then. | ||
for idx in np.arange(m): | ||
if y[idx] == -1: | ||
if coin.binomial(n=1, p=p_minus, size=1) == 1: | ||
new_y[idx] = -new_y[idx] | ||
else: | ||
if coin.binomial(n=1, p=p_plus, size=1) == 1: | ||
new_y[idx] = -new_y[idx] | ||
|
||
return new_y | ||
|
||
|
||
def multiclass_noisify(y, P, random_state=0): | ||
""" Flip classes according to transition probability matrix T. | ||
It expects a number between 0 and the number of classes - 1. | ||
""" | ||
|
||
assert P.shape[0] == P.shape[1] | ||
assert np.max(y) < P.shape[0] | ||
|
||
# row stochastic matrix | ||
assert_array_almost_equal(P.sum(axis=1), np.ones(P.shape[1])) | ||
assert (P >= 0.0).all() | ||
|
||
y = np.array(y) | ||
m = np.shape(y)[0] | ||
new_y = y.copy() | ||
flipper = np.random.RandomState(random_state) | ||
|
||
for idx in np.arange(m): | ||
i = y[idx] | ||
# draw a vector with only an 1 | ||
flipped = flipper.multinomial(1, P[i, :], 1)[0] | ||
new_y[idx] = np.where(flipped == 1)[0] | ||
|
||
return new_y | ||
|
||
|
||
def noisify_with_P(y_train, nb_classes, noise, random_state=None): | ||
|
||
if noise > 0.0: | ||
P = build_uniform_P(nb_classes, noise) | ||
# seed the random numbers with #run | ||
y_train_noisy = multiclass_noisify(y_train, P=P, | ||
random_state=random_state) | ||
actual_noise = (y_train_noisy != y_train).mean() | ||
assert actual_noise > 0.0 | ||
print('Actual noise %.2f' % actual_noise) | ||
y_train = y_train_noisy | ||
else: | ||
P = np.eye(nb_classes) | ||
|
||
return y_train, P | ||
|
||
|
||
def noisify_mnist_asymmetric(y_train, noise, random_state=None): | ||
"""mistakes: | ||
1 <- 7 | ||
2 -> 7 | ||
3 -> 8 | ||
5 <-> 6 | ||
""" | ||
nb_classes = 10 | ||
P = np.eye(nb_classes) | ||
n = noise | ||
|
||
if n > 0.0: | ||
# 1 <- 7 | ||
P[7, 7], P[7, 1] = 1. - n, n | ||
|
||
# 2 -> 7 | ||
P[2, 2], P[2, 7] = 1. - n, n | ||
|
||
# 5 <-> 6 | ||
P[5, 5], P[5, 6] = 1. - n, n | ||
P[6, 6], P[6, 5] = 1. - n, n | ||
|
||
# 3 -> 8 | ||
P[3, 3], P[3, 8] = 1. - n, n | ||
|
||
y_train_noisy = multiclass_noisify(y_train, P=P, | ||
random_state=random_state) | ||
actual_noise = (y_train_noisy != y_train).mean() | ||
assert actual_noise > 0.0 | ||
print('Actual noise %.2f' % actual_noise) | ||
y_train = y_train_noisy | ||
|
||
return y_train, P | ||
|
||
|
||
def noisify_cifar10_asymmetric(y_train, noise, random_state=None): | ||
"""mistakes: | ||
automobile <- truck | ||
bird -> airplane | ||
cat <-> dog | ||
deer -> horse | ||
""" | ||
nb_classes = 10 | ||
P = np.eye(nb_classes) | ||
n = noise | ||
|
||
if n > 0.0: | ||
# automobile <- truck | ||
P[9, 9], P[9, 1] = 1. - n, n | ||
|
||
# bird -> airplane | ||
P[2, 2], P[2, 0] = 1. - n, n | ||
|
||
# cat <-> dog | ||
P[3, 3], P[3, 5] = 1. - n, n | ||
P[5, 5], P[5, 3] = 1. - n, n | ||
|
||
# automobile -> truck | ||
P[4, 4], P[4, 7] = 1. - n, n | ||
|
||
y_train_noisy = multiclass_noisify(y_train, P=P, | ||
random_state=random_state) | ||
actual_noise = (y_train_noisy != y_train).mean() | ||
assert actual_noise > 0.0 | ||
print('Actual noise %.2f' % actual_noise) | ||
y_train = y_train_noisy | ||
|
||
return y_train, P | ||
|
||
|
||
def noisify_cifar100_asymmetric(y_train, noise, random_state=None): | ||
"""mistakes are inside the same superclass of 10 classes, e.g. 'fish' | ||
""" | ||
nb_classes = 100 | ||
P = np.eye(nb_classes) | ||
n = noise | ||
nb_superclasses = 20 | ||
nb_subclasses = 5 | ||
|
||
if n > 0.0: | ||
for i in np.arange(nb_superclasses): | ||
init, end = i * nb_subclasses, (i+1) * nb_subclasses | ||
P[init:end, init:end] = build_for_cifar100(nb_subclasses, n) | ||
|
||
y_train_noisy = multiclass_noisify(y_train, P=P, | ||
random_state=random_state) | ||
print(y_train_noisy) | ||
actual_noise = (y_train_noisy != y_train).mean() | ||
# actual_noise = 0 | ||
assert actual_noise > 0.0 | ||
print('Actual noise %.2f' % actual_noise) | ||
y_train = y_train_noisy | ||
|
||
return y_train, P | ||
|
||
|
||
def noisify_binary_asymmetric(y_train, noise, random_state=None): | ||
"""mistakes: | ||
1 -> 0: n | ||
0 -> 1: .05 | ||
""" | ||
P = np.eye(2) | ||
n = noise | ||
|
||
assert 0.0 <= n < 0.5 | ||
|
||
if noise > 0.0: | ||
P[1, 1], P[1, 0] = 1.0 - n, n | ||
P[0, 0], P[0, 1] = 0.95, 0.05 | ||
|
||
y_train_noisy = multiclass_noisify(y_train, P=P, | ||
random_state=random_state) | ||
actual_noise = (y_train_noisy != y_train).mean() | ||
assert actual_noise > 0.0 | ||
print('Actual noise %.2f' % actual_noise) | ||
y_train = y_train_noisy | ||
|
||
return y_train, P | ||
|
||
|
||
# noisify_pairflip call the function "multiclass_noisify" | ||
def noisify_pairflip(y_train, noise, random_state=None, nb_classes=10): | ||
"""mistakes: | ||
flip in the pair | ||
""" | ||
P = np.eye(nb_classes) | ||
n = noise | ||
|
||
if n > 0.0: | ||
# 0 -> 1 | ||
P[0, 0], P[0, 1] = 1. - n, n | ||
for i in range(1, nb_classes-1): | ||
P[i, i], P[i, i + 1] = 1. - n, n | ||
P[nb_classes-1, nb_classes-1], P[nb_classes-1, 0] = 1. - n, n | ||
|
||
y_train_noisy = multiclass_noisify(y_train, P=P, | ||
random_state=random_state) | ||
actual_noise = (y_train_noisy != y_train).mean() | ||
assert actual_noise > 0.0 | ||
print('Actual noise %.2f' % actual_noise) | ||
y_train = y_train_noisy | ||
print(P) | ||
|
||
return y_train, actual_noise | ||
|
||
|
||
def noisify_multiclass_symmetric(y_train, noise, random_state=None, nb_classes=10): | ||
"""mistakes: | ||
flip in the symmetric way | ||
""" | ||
P = np.ones((nb_classes, nb_classes)) | ||
n = noise | ||
P = (n / (nb_classes - 1)) * P | ||
|
||
if n > 0.0: | ||
# 0 -> 1 | ||
P[0, 0] = 1. - n | ||
for i in range(1, nb_classes-1): | ||
P[i, i] = 1. - n | ||
P[nb_classes-1, nb_classes-1] = 1. - n | ||
|
||
y_train_noisy = multiclass_noisify(y_train, P=P, | ||
random_state=random_state) | ||
actual_noise = (y_train_noisy != y_train).mean() | ||
assert actual_noise > 0.0 | ||
print('Actual noise %.2f' % actual_noise) | ||
y_train = y_train_noisy | ||
|
||
return y_train, actual_noise | ||
|
||
|
||
def noisify(dataset='mnist', nb_classes=10, train_labels=None, noise_type=None, noise_rate=0, random_state=0): | ||
if noise_type == 'pair_flip': | ||
train_noisy_labels, actual_noise_rate = noisify_pairflip(train_labels, noise_rate, | ||
random_state=0, nb_classes=nb_classes) | ||
if noise_type == 'symmetric': | ||
train_noisy_labels, actual_noise_rate = noisify_multiclass_symmetric(train_labels, noise_rate, | ||
random_state=0, nb_classes=nb_classes) | ||
return train_noisy_labels, actual_noise_rate |
Oops, something went wrong.