Skip to content

lwihtittlee/MatchingNetMaster

Repository files navigation

MatchingNet

Introduction

Matching Net model used for oneshot classification. This model is trained and evaluated in mini ImageNet. Refer to https://arxiv.org/abs/1606.04080 for detailed description.
Code is built under tensorflow slim framework. And use part of codes in repository https://github.com/tensorflow/models/tree/master/research/slim.
Special thanks to https://github.com/zergylord and https://github.com/markdtw/matching-networks. I learned a lot in these implemetation.

Demo

Clone this repository and run the demo.py to try the demo!
You can also customize the demo to your application. Just run demo with your attributes as the following format

python demo.py ^
    --vector_size=80 ^
    --num_classes=10 ^
    --shot=5 ^
    --pic_size=224 ^
    --encode_graph=model/frozen_oneshot_base.pb ^
    --match_graph=model/oneshot_nfce10_5.pb ^
    --support_dir=support_data 

Environment

Windows 10
Python 3
Tensorflow r1.1.0
opencv 3.3.1

Prepare Datasets

Folder Structure

- MatchingNet   
  - data   
    - ${DATASET_NAME}   
      - train   
        ...images for train
      - val   
        ...images for validation
  ... other files and directories

Commands

For raw images are too big to feed into memory directly, I encode raw images into small vectors using trained CNN. You can following commands from MatchingNet directory to encode images into vectors and generate oneshot samples automatically. A .tfrecord file and a .npz file will appear in /MatchingNet/data/mini_imagenet/train. The .tfreord file contains oneshot samples and the .npz file contains encoded images.

python generate_oneshot_data.py ^
    --dataset_dir=data/mini_imagenet/train ^
    --possible_classes=10 ^
    --shot=5 ^
    --samples=80000 ^
    --from_raw_images=False ^
    --checkpoint_path=model/frozen_mobilenet_v1_224_prediction.pb ^
    --output_node=MobilenetV1/Logits/SpatialSqueeze ^
    --batch_size=50 ^
    --device=GPU ^
    --save_encoded_images=True 

Flag meaning

--dataset_dir A directory contains raw images or a .npz file containing encoded images. If is a .npz file, the encoding process will not be carried out. Instead, oneshot samples will be generated using vectors stored in the .npz file.
--possible_classes Number of classes to classify.
--shot Number of samples in one support class.
--from_raw_images Weather use CNN to encode images. If is True, images will not be encoded.
--checkpoint_path Path of a frozen graph.
--output_node A node of the frozen graph from which you want to get the output.
--batch_size Number of images encoded at one run. It depends on your computer, if you use CPU to encode images, this number is better set smaller.
--device Use CPU or GPU to run the encoding process.
--save_encoded_images Weather to create .npz file containing encoded images. You can reuse the .npz file to generate new oneshot samples without encoding images repeatedly.

Tips

Do not rename the files generated. The names of these files suggest possible_classes, shot, samples and output_node, which will be used in training and evaluating process.

Train Matching Net

Commands

After datasets prepared, you can run following commands to train matching net.

python train_oneshot_classifier.py ^
    --train_dir=${TRAIN_DIR} ^
    --data_source=${DATA_PATH} ^
    --learning_rate=1000 ^
    --learning_rate_decay_type=fixed ^
    --fce=True ^
    --processing_step=5 ^
    --vector_size=80 ^
    --fc_num=2 ^
    --gradient_range=1e-6 ^
    --clone_on_cpu=True

Flag meaning

--train_dir The directory to store checkpoints and summaries.
--data_source Path to .tfrecord file containing oneshot samples.
--learning_rate Learning rate.
--learning_rate_decay_type Specifies how the learning rate is decayed. One of fixed, exponential, or polynomial.
--from_raw_images Weather use CNN to encode images. If is True, images will not be encoded.
--fce Weather to use fully context embedding.
--processing_step Number of processing blocks in f embedding.
--vector_size Size of encoded images. It depends on output_node.
--fc_num Number of fully-connected layers in front of match layers.
--gradient_range Range of gradients. Used in gradient clipping.

Notice

For a better training result, I introduce layer normaliztion in matching net and use gradient clipping trick in training process. I cannot get a high-accuracy classify model just by training matching layers. So I add several fully-connected layers in front of matching layers. Matching net structure is in /MatchingNet/nets/matchnet. I think my implementation still has many problems I do not realize. If you have any advice, please do not hesitate to tell me. Thank you very much.

Eval Matching Net

python eval_oneshot_classifier.py ^
    --eval_dir=${EVAL_DIR} ^
    --checkpoint_path=${CHECKPOINT_PATH} ^
    --data_source=${DATA_PATH} ^
    --fce=True ^
    --processing_step=5 ^
    --fc_num=2 ^
    --vector_size=80 

Export Interference Graph

python export_oneshot_graph.py ^
    --output_file=${OUTPUT_FILE_PATH} ^
    --possible_classes=5 ^
    --shot=5 ^
    --fc_num=2 ^
    --vector_size=80 ^
    --processing_step=5 ^
    --fce=True

Freeze Graph

python freeze_graph.py ^
    --input_graph=${INTERFERENCE_GRAPH_PATH} ^
    --input_checkpoint=${CHECKPOINT_PATH} ^
    --input_binary=true  ^
    --output_graph=${OUTPUT_FILE_PATH} ^
    --output_node_names=${OUTPUT_NODE}

Acknowledge

This file is copied from tensorflow repository.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages