-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
7c3e1bf
commit 5fc5a60
Showing
1 changed file
with
213 additions
and
41 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,49 +1,221 @@ | ||
# TODO: enable pyspark.testing at some point | ||
# from pyspark.testing import assertDataFrameEqual | ||
import datetime | ||
|
||
from pyspark.sql import functions as F | ||
from pyspark.testing import assertDataFrameEqual | ||
from tidy_tools.core.filter import filter_elements | ||
from tidy_tools.core.filter import filter_nulls | ||
from tidy_tools.core.filter import filter_range | ||
from tidy_tools.core.filter import filter_regex | ||
|
||
|
||
class TestFilters: | ||
def test_filter_nulls(self, eits_data): | ||
# tidy_data = TidyDataFrame(eits_data) | ||
# tidy_data.filter_nulls = filter_nulls | ||
|
||
# # test `filter_nulls` is equivalent to `DataFrame.na.drop` | ||
# assert eits_data.na.drop(how="any").count() == tidy_data.filter_nulls().count() | ||
|
||
# assert ( | ||
# eits_data.na.drop(how="all").count() | ||
# == tidy_data.filter_nulls(strict=True).count() | ||
# ) | ||
|
||
# columns = [ | ||
# "title", | ||
# "release_year", | ||
# "release_date", | ||
# "recorded_at", | ||
# "tracks", | ||
# "duration_minutes", | ||
# "rating", | ||
# ] | ||
# assert ( | ||
# eits_data.na.drop(subset=[columns]).count() | ||
# == tidy_data.filter_nulls(*columns).count() | ||
# ) | ||
|
||
# columns = ["formats", "producer", "ceritifed_gold", "comments"] | ||
# assert ( | ||
# eits_data.na.drop(subset=[columns]).count() | ||
# == tidy_data.filter_nulls(*columns).count() | ||
# ) | ||
assert True | ||
# hypothesis: `strict` parameter behaves like `how` parameter | ||
assertDataFrameEqual(eits_data.na.drop(how="any"), filter_nulls(eits_data)) | ||
assertDataFrameEqual( | ||
eits_data.na.drop(how="all"), filter_nulls(eits_data, strict=True) | ||
) | ||
|
||
# hypothesis: specifying columns behaves same as `subset` | ||
columns = [ | ||
"title", | ||
"release_year", | ||
"release_date", | ||
"recorded_at", | ||
"tracks", | ||
"duration_minutes", | ||
"rating", | ||
] | ||
assertDataFrameEqual( | ||
eits_data.na.drop(subset=columns), filter_nulls(eits_data, *columns) | ||
) | ||
assertDataFrameEqual( | ||
eits_data.na.drop(subset=columns, how="all"), | ||
filter_nulls(eits_data, *columns, strict=True), | ||
) | ||
|
||
def test_filter_regex(self, eits_data): | ||
# tidy_data = TidyDataFrame(eits_data) | ||
# eits_data.filter_nulls = filter_nulls | ||
# tidy_data.filter_nulls = filter_nulls | ||
assert True | ||
# hypothesis: `filter_regex` constructs valid substring filtering queries | ||
TEST_PATTERN: str = r"," | ||
assertDataFrameEqual( | ||
eits_data.filter(F.col("title").rlike(TEST_PATTERN)), | ||
filter_regex(eits_data, "title", pattern=TEST_PATTERN), | ||
) | ||
assertDataFrameEqual( | ||
eits_data.filter( | ||
F.col("title").rlike(TEST_PATTERN) | ||
| F.col("comments").rlike(TEST_PATTERN) | ||
), | ||
filter_regex(eits_data, "title", "comments", pattern=TEST_PATTERN), | ||
) | ||
# hypothesis: `filter_regex` can handle logical operations | ||
assertDataFrameEqual( | ||
eits_data.filter( | ||
F.col("title").rlike(TEST_PATTERN) | ||
& F.col("comments").rlike(TEST_PATTERN) | ||
), | ||
filter_regex( | ||
eits_data, "title", "comments", pattern=TEST_PATTERN, strict=True | ||
), | ||
) | ||
assertDataFrameEqual( | ||
~( | ||
eits_data.filter( | ||
F.col("title").rlike(TEST_PATTERN) | ||
| F.col("comments").rlike(TEST_PATTERN) | ||
) | ||
), | ||
filter_regex( | ||
eits_data, "title", "comments", pattern=TEST_PATTERN, invert=True | ||
), | ||
) | ||
assertDataFrameEqual( | ||
~( | ||
eits_data.filter( | ||
F.col("title").rlike(TEST_PATTERN) | ||
& F.col("comments").rlike(TEST_PATTERN) | ||
) | ||
), | ||
filter_regex( | ||
eits_data, | ||
"title", | ||
"comments", | ||
pattern=TEST_PATTERN, | ||
strict=True, | ||
invert=True, | ||
), | ||
) | ||
|
||
def test_filter_elements(self, eits_data): | ||
# tidy_data = TidyDataFrame(eits_data) | ||
# eits_data.filter_nulls = filter_nulls | ||
# tidy_data.filter_nulls = filter_nulls | ||
assert True | ||
TEST_ELEMENTS: list[str] = [ | ||
["CD", "Vinyl"], | ||
["CD", "Digital"], | ||
"john congleton", | ||
] | ||
assertDataFrameEqual( | ||
eits_data.filter(F.col("formats").isin(TEST_ELEMENTS)), | ||
filter_elements(eits_data, "formats", elements=TEST_ELEMENTS), | ||
) | ||
assertDataFrameEqual( | ||
eits_data.filter( | ||
F.col("formats").isin(TEST_ELEMENTS) | ||
| F.col("producer").isin(TEST_ELEMENTS) | ||
), | ||
filter_elements(eits_data, "formats", "producer", elements=TEST_ELEMENTS), | ||
) | ||
assertDataFrameEqual( | ||
eits_data.filter( | ||
F.col("formats").isin(TEST_ELEMENTS) | ||
& F.col("producer").isin(TEST_ELEMENTS) | ||
), | ||
filter_elements( | ||
eits_data, "formats", "producer", elements=TEST_ELEMENTS, strict=True | ||
), | ||
) | ||
assertDataFrameEqual( | ||
~( | ||
eits_data.filter( | ||
F.col("formats").isin(TEST_ELEMENTS) | ||
| F.col("producer").isin(TEST_ELEMENTS) | ||
) | ||
), | ||
filter_elements( | ||
eits_data, "formats", "producer", elements=TEST_ELEMENTS, invert=True | ||
), | ||
) | ||
assertDataFrameEqual( | ||
~( | ||
eits_data.filter( | ||
F.col("formats").isin(TEST_ELEMENTS) | ||
& F.col("producer").isin(TEST_ELEMENTS) | ||
) | ||
), | ||
filter_elements( | ||
eits_data, | ||
"formats", | ||
"producer", | ||
elements=TEST_ELEMENTS, | ||
strict=True, | ||
invert=True, | ||
), | ||
) | ||
|
||
def test_filter_range(self, eits_data): | ||
TEST_LOWER_BOUND: datetime.date = datetime.date(2001, 1, 1) | ||
TEST_UPPER_BOUND: datetime.date = datetime.date(2015, 12, 31) | ||
|
||
assertDataFrameEqual( | ||
eits_data.filter( | ||
F.col("release_date").between(TEST_LOWER_BOUND, TEST_UPPER_BOUND) | ||
), | ||
filter_range( | ||
eits_data, | ||
"release_date", | ||
lower_bound=TEST_LOWER_BOUND, | ||
upper_bound=TEST_UPPER_BOUND, | ||
), | ||
) | ||
|
||
assertDataFrameEqual( | ||
eits_data.filter( | ||
F.col("release_date").between(TEST_LOWER_BOUND, TEST_UPPER_BOUND) | ||
| F.col("recorded_at").between(TEST_LOWER_BOUND, TEST_UPPER_BOUND) | ||
), | ||
filter_range( | ||
eits_data, | ||
"release_date", | ||
"recorded_at", | ||
lower_bound=TEST_LOWER_BOUND, | ||
upper_bound=TEST_UPPER_BOUND, | ||
), | ||
) | ||
|
||
assertDataFrameEqual( | ||
eits_data.filter( | ||
F.col("release_date").between(TEST_LOWER_BOUND, TEST_UPPER_BOUND) | ||
& F.col("recorded_at").between(TEST_LOWER_BOUND, TEST_UPPER_BOUND) | ||
), | ||
filter_range( | ||
eits_data, | ||
"release_date", | ||
"recorded_at", | ||
lower_bound=TEST_LOWER_BOUND, | ||
upper_bound=TEST_UPPER_BOUND, | ||
strict=True, | ||
), | ||
) | ||
|
||
assertDataFrameEqual( | ||
eits_data.filter( | ||
~( | ||
F.col("release_date").between(TEST_LOWER_BOUND, TEST_UPPER_BOUND) | ||
| F.col("recorded_at").between(TEST_LOWER_BOUND, TEST_UPPER_BOUND) | ||
) | ||
), | ||
filter_range( | ||
eits_data, | ||
"release_date", | ||
"recorded_at", | ||
lower_bound=TEST_LOWER_BOUND, | ||
upper_bound=TEST_UPPER_BOUND, | ||
invert=True, | ||
), | ||
) | ||
|
||
assertDataFrameEqual( | ||
eits_data.filter( | ||
~( | ||
F.col("release_date").between(TEST_LOWER_BOUND, TEST_UPPER_BOUND) | ||
& F.col("recorded_at").between(TEST_LOWER_BOUND, TEST_UPPER_BOUND) | ||
) | ||
), | ||
filter_range( | ||
eits_data, | ||
"release_date", | ||
"recorded_at", | ||
lower_bound=TEST_LOWER_BOUND, | ||
upper_bound=TEST_UPPER_BOUND, | ||
strict=True, | ||
invert=True, | ||
), | ||
) |