Skip to content

Commit

Permalink
qLowerConfidenceBound (pytorch#2517)
Browse files Browse the repository at this point in the history
Summary:
Pull Request resolved: pytorch#2517

Implement a qLowerConfidence acquisition function for more confident/risk-averse candidate selection.

Reviewed By: SebastianAment

Differential Revision: D60624931

fbshipit-source-id: 928c116c970f263aa225e171c6be469a0179f001
  • Loading branch information
sdaulton authored and facebook-github-bot committed Sep 10, 2024
1 parent b58852e commit 167dcb7
Show file tree
Hide file tree
Showing 4 changed files with 144 additions and 21 deletions.
26 changes: 24 additions & 2 deletions botorch/acquisition/input_constructors.py
Original file line number Diff line number Diff line change
Expand Up @@ -13,7 +13,7 @@

import inspect
from collections.abc import Hashable, Iterable, Sequence
from typing import Any, Callable, Optional, TypeVar, Union
from typing import Any, Callable, List, Optional, TypeVar, Union

import torch
from botorch.acquisition.acquisition import AcquisitionFunction
Expand Down Expand Up @@ -50,6 +50,7 @@
)
from botorch.acquisition.monte_carlo import (
qExpectedImprovement,
qLowerConfidenceBound,
qNoisyExpectedImprovement,
qProbabilityOfImprovement,
qSimpleRegret,
Expand Down Expand Up @@ -767,13 +768,15 @@ def construct_inputs_qPI(
}


@acqf_input_constructor(qUpperConfidenceBound)
@acqf_input_constructor(qLowerConfidenceBound, qUpperConfidenceBound)
def construct_inputs_qUCB(
model: Model,
objective: Optional[MCAcquisitionObjective] = None,
posterior_transform: Optional[PosteriorTransform] = None,
X_pending: Optional[Tensor] = None,
sampler: Optional[MCSampler] = None,
X_baseline: Optional[Tensor] = None,
constraints: Optional[List[Callable[[Tensor], Tensor]]] = None,
beta: float = 0.2,
) -> dict[str, Any]:
r"""Construct kwargs for the `qUpperConfidenceBound` constructor.
Expand All @@ -788,11 +791,30 @@ def construct_inputs_qUCB(
Concatenated into X upon forward call.
sampler: The sampler used to draw base samples. If omitted, uses
the acquisition functions's default sampler.
X_baseline: A `batch_shape x r x d`-dim Tensor of `r` design points
that have already been observed. These points are used to
compute with infeasible cost when there are constraints.
constraints: A list of constraint callables which map a Tensor of posterior
samples of dimension `sample_shape x batch-shape x q x m`-dim to a
`sample_shape x batch-shape x q`-dim Tensor. The associated constraints
are considered satisfied if the output is less than zero.
beta: Controls tradeoff between mean and standard deviation in UCB.
Returns:
A dict mapping kwarg names of the constructor to values.
"""
if constraints is not None:
if X_baseline is None:
raise ValueError("Constraints require an X_baseline.")
if objective is None:
objective = IdentityMCObjective()
objective = ConstrainedMCObjective(
objective=objective,
constraints=constraints,
infeasible_cost=get_infeasible_cost(
X=X_baseline, model=model, objective=objective
),
)
return {
"model": model,
"objective": objective,
Expand Down
19 changes: 18 additions & 1 deletion botorch/acquisition/monte_carlo.py
Original file line number Diff line number Diff line change
Expand Up @@ -856,7 +856,10 @@ def __init__(
posterior_transform=posterior_transform,
X_pending=X_pending,
)
self.beta_prime = math.sqrt(beta * math.pi / 2)
self.beta_prime = self._get_beta_prime(beta=beta)

def _get_beta_prime(self, beta: float) -> float:
return math.sqrt(beta * math.pi / 2)

def _sample_forward(self, obj: Tensor) -> Tensor:
r"""Evaluate qUpperConfidenceBound per sample on the candidate set `X`.
Expand All @@ -869,3 +872,17 @@ def _sample_forward(self, obj: Tensor) -> Tensor:
"""
mean = obj.mean(dim=0)
return mean + self.beta_prime * (obj - mean).abs()


class qLowerConfidenceBound(qUpperConfidenceBound):
r"""MC-based batched lower confidence bound.
This acquisition function is useful for confident/risk-averse decision making.
This acquisition function is intended to be maximized as with qUpperConfidenceBound,
but the qLowerConfidenceBound will be pessimistic in the face of uncertainty and
lead to conservative candidates.
"""

def _get_beta_prime(self, beta: float) -> float:
"""Multiply beta prime by -1 to get the lower confidence bound."""
return -super()._get_beta_prime(beta=beta)
81 changes: 70 additions & 11 deletions test/acquisition/test_input_constructors.py
Original file line number Diff line number Diff line change
Expand Up @@ -61,6 +61,7 @@
)
from botorch.acquisition.monte_carlo import (
qExpectedImprovement,
qLowerConfidenceBound,
qNoisyExpectedImprovement,
qProbabilityOfImprovement,
qSimpleRegret,
Expand All @@ -86,6 +87,7 @@
from botorch.acquisition.multi_objective.utils import get_default_partitioning_alpha
from botorch.acquisition.objective import (
ConstrainedMCObjective,
IdentityMCObjective,
LinearMCObjective,
ScalarizedPosteriorTransform,
)
Expand Down Expand Up @@ -754,34 +756,86 @@ def test_construct_inputs_qPI(self) -> None:
self.assertIs(acqf.model, mock_model)
self.assertIs(acqf.objective, objective)

def test_construct_inputs_qUCB(self) -> None:
c = get_acqf_input_constructor(qUpperConfidenceBound)

class TestQUpperConfidenceBoundInputConstructor(InputConstructorBaseTestCase):
acqf_class = qUpperConfidenceBound

def setUp(self, suppress_input_warnings: bool = True) -> None:
super().setUp(suppress_input_warnings=suppress_input_warnings)
self.c = get_acqf_input_constructor(self.acqf_class)

def test_confidence_bound(self) -> None:
mock_model = self.mock_model
kwargs = c(model=mock_model, training_data=self.blockX_blockY)
kwargs = self.c(model=mock_model, training_data=self.blockX_blockY)
self.assertEqual(kwargs["model"], mock_model)
self.assertIsNone(kwargs["objective"])
self.assertIsNone(kwargs["X_pending"])
self.assertIsNone(kwargs["sampler"])
self.assertEqual(kwargs["beta"], 0.2)
acqf = qUpperConfidenceBound(**kwargs)
acqf = self.acqf_class(**kwargs)
self.assertIs(acqf.model, mock_model)

def test_confidence_bound_with_objective(self) -> None:
X_pending = torch.rand(2, 2)
objective = LinearMCObjective(torch.rand(2))
kwargs = c(
model=mock_model,
kwargs = self.c(
model=self.mock_model,
training_data=self.blockX_blockY,
objective=objective,
X_pending=X_pending,
beta=0.1,
)
self.assertEqual(kwargs["model"], mock_model)
self.assertEqual(kwargs["model"], self.mock_model)
self.assertTrue(torch.equal(kwargs["objective"].weights, objective.weights))
self.assertTrue(torch.equal(kwargs["X_pending"], X_pending))
self.assertIsNone(kwargs["sampler"])
self.assertEqual(kwargs["beta"], 0.1)
acqf = qUpperConfidenceBound(**kwargs)
self.assertIs(acqf.model, mock_model)
acqf = self.acqf_class(**kwargs)
self.assertIs(acqf.model, self.mock_model)

def test_confidence_bound_with_constraints_error(self) -> None:
with self.assertRaisesRegex(ValueError, "Constraints require an X_baseline."):
self.c(
model=self.mock_model,
training_data=self.blockX_blockY,
constraints=torch.rand(2, 2),
)

def test_confidence_bound_with_constraints(self) -> None:
# these are needed for computing the infeasible cost
self.mock_model._posterior._mean = torch.zeros(2, 2)
self.mock_model._posterior._variance = torch.ones(2, 2)

X_baseline = torch.rand(2, 2)
outcome_constraints = (torch.tensor([[0.0, 1.0]]), torch.tensor([[0.5]]))
constraints = get_outcome_constraint_transforms(
outcome_constraints=outcome_constraints
)
for objective in (LinearMCObjective(torch.rand(2)), None):
with self.subTest(objective=objective):
kwargs = self.c(
model=self.mock_model,
training_data=self.blockX_blockY,
objective=objective,
constraints=constraints,
X_baseline=X_baseline,
)
final_objective = kwargs["objective"]
self.assertIsInstance(final_objective, ConstrainedMCObjective)
if objective is None:
self.assertIsInstance(
final_objective.objective, IdentityMCObjective
)
else:
self.assertIs(final_objective.objective, objective)
self.assertIs(final_objective.constraints, constraints)
# test that we can construct the acquisition function
self.acqf_class(**kwargs)


class TestQLowerConfidenceBoundInputConstructor(
TestQUpperConfidenceBoundInputConstructor
):
acqf_class = qLowerConfidenceBound


class TestMultiObjectiveAcquisitionFunctionInputConstructors(
Expand Down Expand Up @@ -1452,7 +1506,12 @@ def setUp(self, suppress_input_warnings: bool = True) -> None:
# {key: (list of acquisition functions, arguments they accept)}
self.cases = {
"PosteriorMean-type": (
[PosteriorMean, UpperConfidenceBound, qUpperConfidenceBound],
[
PosteriorMean,
UpperConfidenceBound,
qUpperConfidenceBound,
qLowerConfidenceBound,
],
{"model": self.mock_model},
),
}
Expand Down
39 changes: 32 additions & 7 deletions test/acquisition/test_monte_carlo.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,6 +4,7 @@
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

import math
import warnings
from copy import deepcopy
from functools import partial
Expand All @@ -17,6 +18,7 @@
from botorch.acquisition.monte_carlo import (
MCAcquisitionFunction,
qExpectedImprovement,
qLowerConfidenceBound,
qNoisyExpectedImprovement,
qProbabilityOfImprovement,
qSimpleRegret,
Expand Down Expand Up @@ -871,7 +873,9 @@ def test_q_simple_regret_constraints(self):


class TestQUpperConfidenceBound(BotorchTestCase):
def test_q_upper_confidence_bound(self):
acqf_class = qUpperConfidenceBound

def test_q_confidence_bound(self):
for dtype in (torch.float, torch.double):
# the event shape is `b x q x t` = 1 x 1 x 1
samples = torch.zeros(1, 1, 1, device=self.device, dtype=dtype)
Expand All @@ -881,13 +885,13 @@ def test_q_upper_confidence_bound(self):

# basic test
sampler = IIDNormalSampler(sample_shape=torch.Size([2]))
acqf = qUpperConfidenceBound(model=mm, beta=0.5, sampler=sampler)
acqf = self.acqf_class(model=mm, beta=0.5, sampler=sampler)
res = acqf(X)
self.assertEqual(res.item(), 0.0)

# basic test
sampler = IIDNormalSampler(sample_shape=torch.Size([2]), seed=12345)
acqf = qUpperConfidenceBound(model=mm, beta=0.5, sampler=sampler)
acqf = self.acqf_class(model=mm, beta=0.5, sampler=sampler)
res = acqf(X)
self.assertEqual(res.item(), 0.0)
self.assertEqual(acqf.sampler.base_samples.shape, torch.Size([2, 1, 1, 1]))
Expand Down Expand Up @@ -924,7 +928,7 @@ def test_q_upper_confidence_bound(self):
sum(issubclass(w.category, BotorchWarning) for w in ws), 1
)

def test_q_upper_confidence_bound_batch(self):
def test_q_confidence_bound_batch(self):
# TODO: T41739913 Implement tests for all MCAcquisitionFunctions
for dtype in (torch.float, torch.double):
samples = torch.zeros(2, 2, 1, device=self.device, dtype=dtype)
Expand All @@ -935,14 +939,14 @@ def test_q_upper_confidence_bound_batch(self):

# test batch mode
sampler = IIDNormalSampler(sample_shape=torch.Size([2]))
acqf = qUpperConfidenceBound(model=mm, beta=0.5, sampler=sampler)
acqf = self.acqf_class(model=mm, beta=0.5, sampler=sampler)
res = acqf(X)
self.assertEqual(res[0].item(), 1.0)
self.assertEqual(res[1].item(), 0.0)

# test batch mode
sampler = IIDNormalSampler(sample_shape=torch.Size([2]), seed=12345)
acqf = qUpperConfidenceBound(model=mm, beta=0.5, sampler=sampler)
acqf = self.acqf_class(model=mm, beta=0.5, sampler=sampler)
res = acqf(X) # 1-dim batch
self.assertEqual(res[0].item(), 1.0)
self.assertEqual(res[1].item(), 0.0)
Expand All @@ -961,7 +965,7 @@ def test_q_upper_confidence_bound_batch(self):

# test batch mode, qmc
sampler = SobolQMCNormalSampler(sample_shape=torch.Size([2]))
acqf = qUpperConfidenceBound(model=mm, beta=0.5, sampler=sampler)
acqf = self.acqf_class(model=mm, beta=0.5, sampler=sampler)
res = acqf(X)
self.assertEqual(res[0].item(), 1.0)
self.assertEqual(res[1].item(), 0.0)
Expand Down Expand Up @@ -991,9 +995,30 @@ def test_q_upper_confidence_bound_batch(self):
sum(issubclass(w.category, BotorchWarning) for w in ws), 1
)

def test_beta_prime(self, negate: bool = False) -> None:
acqf = self.acqf_class(
model=MockModel(
posterior=MockPosterior(
samples=torch.zeros(2, 2, 1, device=self.device, dtype=torch.double)
)
),
beta=1.96,
)
expected_value = math.sqrt(1.96 * math.pi / 2)
if negate:
expected_value *= -1
self.assertEqual(acqf.beta_prime, expected_value)

# TODO: Test different objectives (incl. constraints)


class TestQLowerConfidenceBound(TestQUpperConfidenceBound):
acqf_class = qLowerConfidenceBound

def test_beta_prime(self):
super().test_beta_prime(negate=True)


class TestMCAcquisitionFunctionWithConstraints(BotorchTestCase):
def test_mc_acquisition_function_with_constraints(self):
for dtype in (torch.float, torch.double):
Expand Down

0 comments on commit 167dcb7

Please sign in to comment.